Ultrasound sensing with optical microcavities

IF 20.6 Q1 OPTICS Light-Science & Applications Pub Date : 2024-07-09 DOI:10.1038/s41377-024-01480-8
Xuening Cao, Hao Yang, Zu-Lei Wu, Bei-Bei Li
{"title":"Ultrasound sensing with optical microcavities","authors":"Xuening Cao, Hao Yang, Zu-Lei Wu, Bei-Bei Li","doi":"10.1038/s41377-024-01480-8","DOIUrl":null,"url":null,"abstract":"<p>Ultrasound sensors play an important role in biomedical imaging, industrial nondestructive inspection, etc. Traditional ultrasound sensors that use piezoelectric transducers face limitations in sensitivity and spatial resolution when miniaturized, with typical sizes at the millimeter to centimeter scale. To overcome these challenges, optical ultrasound sensors have emerged as a promising alternative, offering both high sensitivity and spatial resolution. In particular, ultrasound sensors utilizing high-quality factor (<i>Q</i>) optical microcavities have achieved unprecedented performance in terms of sensitivity and bandwidth, while also enabling mass production on silicon chips. In this review, we focus on recent advances in ultrasound sensing applications using three types of optical microcavities: Fabry-Perot cavities, π-phase-shifted Bragg gratings, and whispering gallery mode microcavities. We provide an overview of the ultrasound sensing mechanisms employed by these microcavities and discuss the key parameters for optimizing ultrasound sensors. Furthermore, we survey recent advances in ultrasound sensing using these microcavity-based approaches, highlighting their applications in diverse detection scenarios, such as photoacoustic imaging, ranging, and particle detection. The goal of this review is to provide a comprehensive understanding of the latest advances in ultrasound sensing with optical microcavities and their potential for future development in high-performance ultrasound imaging and sensing technologies.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":null,"pages":null},"PeriodicalIF":20.6000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light-Science & Applications","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-024-01480-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Ultrasound sensors play an important role in biomedical imaging, industrial nondestructive inspection, etc. Traditional ultrasound sensors that use piezoelectric transducers face limitations in sensitivity and spatial resolution when miniaturized, with typical sizes at the millimeter to centimeter scale. To overcome these challenges, optical ultrasound sensors have emerged as a promising alternative, offering both high sensitivity and spatial resolution. In particular, ultrasound sensors utilizing high-quality factor (Q) optical microcavities have achieved unprecedented performance in terms of sensitivity and bandwidth, while also enabling mass production on silicon chips. In this review, we focus on recent advances in ultrasound sensing applications using three types of optical microcavities: Fabry-Perot cavities, π-phase-shifted Bragg gratings, and whispering gallery mode microcavities. We provide an overview of the ultrasound sensing mechanisms employed by these microcavities and discuss the key parameters for optimizing ultrasound sensors. Furthermore, we survey recent advances in ultrasound sensing using these microcavity-based approaches, highlighting their applications in diverse detection scenarios, such as photoacoustic imaging, ranging, and particle detection. The goal of this review is to provide a comprehensive understanding of the latest advances in ultrasound sensing with optical microcavities and their potential for future development in high-performance ultrasound imaging and sensing technologies.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用光学微腔进行超声波传感
超声波传感器在生物医学成像、工业无损检测等领域发挥着重要作用。使用压电传感器的传统超声波传感器在微型化时面临灵敏度和空间分辨率的限制,其尺寸通常在毫米到厘米之间。为了克服这些挑战,光学超声传感器应运而生,它具有高灵敏度和高空间分辨率,是一种很有前途的替代方案。特别是,利用高质量系数(Q)光学微腔的超声波传感器在灵敏度和带宽方面实现了前所未有的性能,同时还能在硅芯片上进行大规模生产。在这篇综述中,我们将重点介绍使用三种光学微腔的超声波传感应用的最新进展:法布里-珀罗腔、π 相移布拉格光栅和耳语廊模式微腔。我们概述了这些微腔采用的超声波传感机制,并讨论了优化超声波传感器的关键参数。此外,我们还考察了利用这些基于微腔的方法进行超声波传感的最新进展,重点介绍了它们在光声成像、测距和粒子探测等不同探测场景中的应用。本综述的目的是全面介绍利用光学微腔进行超声波传感的最新进展及其在高性能超声波成像和传感技术方面的未来发展潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Light-Science & Applications
Light-Science & Applications 数理科学, 物理学I, 光学, 凝聚态物性 II :电子结构、电学、磁学和光学性质, 无机非金属材料, 无机非金属类光电信息与功能材料, 工程与材料, 信息科学, 光学和光电子学, 光学和光电子材料, 非线性光学与量子光学
自引率
0.00%
发文量
803
审稿时长
2.1 months
期刊最新文献
Parity-Time symmetry helps breaking a new limit Neural stimulation and modulation with sub-cellular precision by optomechanical bio-dart Phase-change VO2-based thermochromic smart windows Optical fibre based artificial compound eyes for direct static imaging and ultrafast motion detection Lanthanide ion-doped upconversion nanoparticles for low-energy super-resolution applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1