Revealing critical functional enzymes in anammox nitrogen removal and rate-limiting step in catalytic pathways: Insight into metaproteomics and density functional theory

IF 9.7 1区 环境科学与生态学 Q1 AGRICULTURAL ENGINEERING Bioresource Technology Pub Date : 2024-07-08 DOI:10.1016/j.biortech.2024.131090
Zhicheng Jiang , Yuhang He , Ming Zeng , Yinqing Zhang , Xinxin Xu , Meng Zhang
{"title":"Revealing critical functional enzymes in anammox nitrogen removal and rate-limiting step in catalytic pathways: Insight into metaproteomics and density functional theory","authors":"Zhicheng Jiang ,&nbsp;Yuhang He ,&nbsp;Ming Zeng ,&nbsp;Yinqing Zhang ,&nbsp;Xinxin Xu ,&nbsp;Meng Zhang","doi":"10.1016/j.biortech.2024.131090","DOIUrl":null,"url":null,"abstract":"<div><p>To reveal the key enzymes in the nitrogen removal pathway and to further elucidate the mechanism of the catalytic reaction, this study utilized metaproteomics combined with molecular dynamics and density functional theory calculation. <em>K. stuttgartiensis</em> provided the proteins up to 88.37 % in the anammox-based system. Hydrazine synthase (HZS) and hydrazine dehydrogenase (HDH) accounted for 15.94 % and 3.45 % of the total proteins expressed by <em>K. stuttgartiensis</em>, thus were considered as critical enzymes in the nitrogen removal pathway. The process of HZSγ binding to NO with lowest binding free energy of −4.91 ± 1.33 kJ/mol. The reaction catalyzed by HZSα was calculated to be the rate-limiting catalyzing step, because it transferred the proton from NH<sub>3</sub> to ·OH by crossing an energy barrier of up to 190.29 kJ/mol. This study provided molecular level insights to enhance the performance of nitrogen removal in anammox-based system.</p></div>","PeriodicalId":258,"journal":{"name":"Bioresource Technology","volume":null,"pages":null},"PeriodicalIF":9.7000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960852424007946","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

To reveal the key enzymes in the nitrogen removal pathway and to further elucidate the mechanism of the catalytic reaction, this study utilized metaproteomics combined with molecular dynamics and density functional theory calculation. K. stuttgartiensis provided the proteins up to 88.37 % in the anammox-based system. Hydrazine synthase (HZS) and hydrazine dehydrogenase (HDH) accounted for 15.94 % and 3.45 % of the total proteins expressed by K. stuttgartiensis, thus were considered as critical enzymes in the nitrogen removal pathway. The process of HZSγ binding to NO with lowest binding free energy of −4.91 ± 1.33 kJ/mol. The reaction catalyzed by HZSα was calculated to be the rate-limiting catalyzing step, because it transferred the proton from NH3 to ·OH by crossing an energy barrier of up to 190.29 kJ/mol. This study provided molecular level insights to enhance the performance of nitrogen removal in anammox-based system.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
揭示厌氧脱氮过程中的关键功能酶和催化途径中的限速步骤:元蛋白组学和密度泛函理论的启示
为了揭示脱氮途径中的关键酶,并进一步阐明催化反应的机理,本研究利用元蛋白质组学结合分子动力学和密度泛函理论计算,发现了氨氧化系统中高达88.37%的蛋白质表达量,其中肼合成酶(HZS)和肼脱氢酶(HDH)分别占总表达量的15.94%和3.45%。肼合成酶(HZS)和肼脱氢酶(HDH)分别占氨氧化酶表达蛋白总量的 15.94% 和 3.45%,因此被认为是脱氮途径中的关键酶。HZSγ与NO的结合自由能最低,为-4.91 ± 1.33 kJ/mol。据计算,HZSα催化的反应是限速催化步骤,因为它通过跨越高达 190.29 kJ/mol 的能障将质子从 NH 转移到 -OH。这项研究为提高基于厌氧反应的系统的脱氮性能提供了分子水平的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Bioresource Technology
Bioresource Technology 工程技术-能源与燃料
CiteScore
20.80
自引率
19.30%
发文量
2013
审稿时长
12 days
期刊介绍: Bioresource Technology publishes original articles, review articles, case studies, and short communications covering the fundamentals, applications, and management of bioresource technology. The journal seeks to advance and disseminate knowledge across various areas related to biomass, biological waste treatment, bioenergy, biotransformations, bioresource systems analysis, and associated conversion or production technologies. Topics include: • Biofuels: liquid and gaseous biofuels production, modeling and economics • Bioprocesses and bioproducts: biocatalysis and fermentations • Biomass and feedstocks utilization: bioconversion of agro-industrial residues • Environmental protection: biological waste treatment • Thermochemical conversion of biomass: combustion, pyrolysis, gasification, catalysis.
期刊最新文献
Enhancing humic acids production from cornstalk under fast hydrothermal conditions: Insights into new pathways of skeleton self-polymerization and branch growth. Diversity in mechanisms of natural humic acid enhanced current production in soil bioelectrochemical systems. Occurrence and mechanism of sulfamethoxazole in alginate-like extracellular polymers from excess sludge. Mutagenesis and fluorescence-activated cell sorting of oleaginous Saccharomyces cerevisiae and the multi-omics analysis of its high lipid accumulation mechanisms. Sustainable production of a biotechnologically relevant β-galactosidase in Escherichia coli cells using crude glycerol and cheese whey permeate.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1