A polymer bilayer hole transporting layer architecture for high-efficiency and stable organic solar cells

IF 38.6 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Joule Pub Date : 2024-07-09 DOI:10.1016/j.joule.2024.06.013
Junyi Xu, Thomas Heumüller, Vincent M. Le Corre, Anastasiia Barabash, Roberto Félix, Johannes Frisch, Marcus Bär, Christoph J. Brabec
{"title":"A polymer bilayer hole transporting layer architecture for high-efficiency and stable organic solar cells","authors":"Junyi Xu, Thomas Heumüller, Vincent M. Le Corre, Anastasiia Barabash, Roberto Félix, Johannes Frisch, Marcus Bär, Christoph J. Brabec","doi":"10.1016/j.joule.2024.06.013","DOIUrl":null,"url":null,"abstract":"<p>All-solution-processed organic photovoltaic (OPV) cells allow cost- and energy-effective fabrication methods for large-area devices. Despite significant progress on laboratory-scale devices, there is still a lack of interface materials that can be solution processed on top of the active layer, are compatible with novel non-fullerene acceptors (NFAs), and also provide sufficient long-term stability. We developed a novel interface layer concept, where alcohol-based organic polymer nanoparticles can be processed on top of a polymer-NFA active layer and doped to achieve a quasi-Ohmic hole contact. Moreover, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is processed as a second layer, forming a bilayer solution-processed hole transporting layer (HTL), providing an industrially relevant inverted architecture with a protective PEDOT:PSS layer on top. Most importantly, exceptional stability is observed. PM6:Y6 devices with the bilayer HTL are demonstrated to maintain 93% of their initial efficiency for 1,800 h under continuous solar cell operation at 60°C.</p>","PeriodicalId":343,"journal":{"name":"Joule","volume":null,"pages":null},"PeriodicalIF":38.6000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Joule","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.joule.2024.06.013","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

All-solution-processed organic photovoltaic (OPV) cells allow cost- and energy-effective fabrication methods for large-area devices. Despite significant progress on laboratory-scale devices, there is still a lack of interface materials that can be solution processed on top of the active layer, are compatible with novel non-fullerene acceptors (NFAs), and also provide sufficient long-term stability. We developed a novel interface layer concept, where alcohol-based organic polymer nanoparticles can be processed on top of a polymer-NFA active layer and doped to achieve a quasi-Ohmic hole contact. Moreover, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is processed as a second layer, forming a bilayer solution-processed hole transporting layer (HTL), providing an industrially relevant inverted architecture with a protective PEDOT:PSS layer on top. Most importantly, exceptional stability is observed. PM6:Y6 devices with the bilayer HTL are demonstrated to maintain 93% of their initial efficiency for 1,800 h under continuous solar cell operation at 60°C.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于高效稳定有机太阳能电池的聚合物双层空穴传输层结构
全溶液处理有机光伏(OPV)电池可为大面积设备提供具有成本和能源效益的制造方法。尽管在实验室规模的设备上取得了重大进展,但仍然缺乏可在活性层上进行溶液处理、与新型非富勒烯受体(NFA)兼容并能提供足够长期稳定性的界面材料。我们提出了一种新颖的界面层概念,即在聚合物-NFA 活性层上加工醇基有机聚合物纳米粒子并掺杂,以实现准欧姆空穴接触。此外,聚(3,4-亚乙二氧基噻吩):聚(苯乙烯磺酸)(PEDOT:PSS)被加工为第二层,形成了双层溶液加工空穴传输层(HTL),提供了一种具有工业相关性的倒置结构,上面还有一层 PEDOT:PSS 保护层。最重要的是,这种器件具有卓越的稳定性。在 60°C 温度条件下连续运行 1,800 小时后,带有双层 HTL 的 PM6:Y6 器件仍能保持 93% 的初始效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Joule
Joule Energy-General Energy
CiteScore
53.10
自引率
2.00%
发文量
198
期刊介绍: Joule is a sister journal to Cell that focuses on research, analysis, and ideas related to sustainable energy. It aims to address the global challenge of the need for more sustainable energy solutions. Joule is a forward-looking journal that bridges disciplines and scales of energy research. It connects researchers and analysts working on scientific, technical, economic, policy, and social challenges related to sustainable energy. The journal covers a wide range of energy research, from fundamental laboratory studies on energy conversion and storage to global-level analysis. Joule aims to highlight and amplify the implications, challenges, and opportunities of novel energy research for different groups in the field.
期刊最新文献
Phase-selective recovery and regeneration of end-of-life electric vehicle blended cathodes via selective leaching and direct recycling Binary cations minimize energy loss in the wide-band-gap perovskite toward efficient all-perovskite tandem solar cells Temperature excavation to boost machine learning battery thermochemical predictions Hyping direct seawater electrolysis hinders electrolyzer development CsPbI3 perovskite solar module with certified aperture area efficiency >18% based on ambient-moisture-assisted surface hydrolysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1