Stabilizing efficient wide-bandgap perovskite in perovskite-organic tandem solar cells

IF 38.6 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Joule Pub Date : 2024-07-08 DOI:10.1016/j.joule.2024.06.009
Xiao Guo, Zhenrong Jia, Shunchang Liu, Renjun Guo, Fangyuan Jiang, Yangwei Shi, Zijing Dong, Ran Luo, Yu-Duan Wang, Zhuojie Shi, Jia Li, Jinxi Chen, Ling Kai Lee, Peter Müller-Buschbaum, David S. Ginger, David J. Paterson, Yi Hou
{"title":"Stabilizing efficient wide-bandgap perovskite in perovskite-organic tandem solar cells","authors":"Xiao Guo, Zhenrong Jia, Shunchang Liu, Renjun Guo, Fangyuan Jiang, Yangwei Shi, Zijing Dong, Ran Luo, Yu-Duan Wang, Zhuojie Shi, Jia Li, Jinxi Chen, Ling Kai Lee, Peter Müller-Buschbaum, David S. Ginger, David J. Paterson, Yi Hou","doi":"10.1016/j.joule.2024.06.009","DOIUrl":null,"url":null,"abstract":"<p>Iodide and bromide integration facilitate bandgap tunability in wide-bandgap perovskites, yet high concentrations of bromide lead to halide phase segregation, adversely affecting the efficiency and stability of solar cell devices. In this work, 2-amino-4,5-imidazoledicarbonitrile (AIDCN), with highly polarized charge distribution and compact molecular configuration, is incorporated into a 1.86 eV wide-bandgap perovskite to effectively suppress photoinduced iodine escape and phase segregation. Hyperspectral photoluminescence microscopy reveals that AIDCN mitigates phase segregation under continuous laser exposure. Concurrent <em>in situ</em> grazing-incidence wide-angle X-ray scattering and X-ray fluorescence measurements further validate suppressed iodine escape, evidenced by a notable slowing down of lattice shrinkage and a well-maintained overall chemical composition of the perovskite under continuous illumination. Applying this approach, we achieve a power conversion efficiency (PCE) of 18.52% in 1.86 eV wide-bandgap perovskite solar cells. By integrating this perovskite subcell with the PM6:BTP-eC9 organic subcell, the tandem attains a maximum PCE of 25.13%, with a certified stabilized PCE of 23.40%.</p>","PeriodicalId":343,"journal":{"name":"Joule","volume":null,"pages":null},"PeriodicalIF":38.6000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Joule","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.joule.2024.06.009","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Iodide and bromide integration facilitate bandgap tunability in wide-bandgap perovskites, yet high concentrations of bromide lead to halide phase segregation, adversely affecting the efficiency and stability of solar cell devices. In this work, 2-amino-4,5-imidazoledicarbonitrile (AIDCN), with highly polarized charge distribution and compact molecular configuration, is incorporated into a 1.86 eV wide-bandgap perovskite to effectively suppress photoinduced iodine escape and phase segregation. Hyperspectral photoluminescence microscopy reveals that AIDCN mitigates phase segregation under continuous laser exposure. Concurrent in situ grazing-incidence wide-angle X-ray scattering and X-ray fluorescence measurements further validate suppressed iodine escape, evidenced by a notable slowing down of lattice shrinkage and a well-maintained overall chemical composition of the perovskite under continuous illumination. Applying this approach, we achieve a power conversion efficiency (PCE) of 18.52% in 1.86 eV wide-bandgap perovskite solar cells. By integrating this perovskite subcell with the PM6:BTP-eC9 organic subcell, the tandem attains a maximum PCE of 25.13%, with a certified stabilized PCE of 23.40%.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
稳定包晶有机串联太阳能电池中的高效宽带隙包晶
碘化物和溴化物的整合促进了宽带隙包晶石的带隙可调性,然而高浓度的溴化物会导致卤化物相析出,从而对太阳能电池器件的效率和稳定性产生不利影响。在这项研究中,2-氨基-4,5-咪唑二腈(AIDCN)具有高度极化的电荷分布和紧凑的分子构型,被加入到 1.86 eV 宽带隙包晶石中,从而有效地抑制了光诱导的碘逸出和相分离。高光谱光致发光显微镜显示,AIDCN 可在连续激光照射下减轻相分离现象。同时进行的原位掠入射广角 X 射线散射和 X 射线荧光测量进一步验证了碘逸散的抑制作用,在连续照射下,晶格收缩明显减缓,包晶的整体化学成分保持良好。应用这种方法,我们在 1.86 eV 宽带隙过氧化物太阳能电池中实现了 18.52% 的功率转换效率 (PCE)。通过将这种包晶子电池与 PM6:BTP-eC9 有机子电池集成,串联电池的最大 PCE 为 25.13%,经认证的稳定 PCE 为 23.40%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Joule
Joule Energy-General Energy
CiteScore
53.10
自引率
2.00%
发文量
198
期刊介绍: Joule is a sister journal to Cell that focuses on research, analysis, and ideas related to sustainable energy. It aims to address the global challenge of the need for more sustainable energy solutions. Joule is a forward-looking journal that bridges disciplines and scales of energy research. It connects researchers and analysts working on scientific, technical, economic, policy, and social challenges related to sustainable energy. The journal covers a wide range of energy research, from fundamental laboratory studies on energy conversion and storage to global-level analysis. Joule aims to highlight and amplify the implications, challenges, and opportunities of novel energy research for different groups in the field.
期刊最新文献
Scalability and stability in CO2 reduction via tomography-guided system design Phase-selective recovery and regeneration of end-of-life electric vehicle blended cathodes via selective leaching and direct recycling Binary cations minimize energy loss in the wide-band-gap perovskite toward efficient all-perovskite tandem solar cells Temperature excavation to boost machine learning battery thermochemical predictions Hyping direct seawater electrolysis hinders electrolyzer development
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1