Antibody modulation of B cell responses—Incorporating positive and negative feedback

IF 25.5 1区 医学 Q1 IMMUNOLOGY Immunity Pub Date : 2024-07-09 DOI:10.1016/j.immuni.2024.06.009
Jason G. Cyster, Patrick C. Wilson
{"title":"Antibody modulation of B cell responses—Incorporating positive and negative feedback","authors":"Jason G. Cyster, Patrick C. Wilson","doi":"10.1016/j.immuni.2024.06.009","DOIUrl":null,"url":null,"abstract":"<p>Antibodies are powerful modulators of ongoing and future B cell responses. While the concept of antibody feedback has been appreciated for over a century, the topic has seen a surge in interest due to the evidence that the broadening of antibody responses to SARS-CoV-2 after a third mRNA vaccination is a consequence of antibody feedback. Moreover, the discovery that slow antigen delivery can lead to more robust humoral immunity has put a spotlight on the capacity for early antibodies to augment B cell responses. Here, we review the mechanisms whereby antibody feedback shapes B cell responses, integrating findings in humans and in mouse models. We consider the major influence of epitope masking and the diverse actions of complement and Fc receptors and provide a framework for conceptualizing the ways antigen-specific antibodies may influence B cell responses to any form of antigen, in conditions as diverse as infectious disease, autoimmunity, and cancer.</p>","PeriodicalId":13269,"journal":{"name":"Immunity","volume":"34 1","pages":""},"PeriodicalIF":25.5000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Immunity","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.immuni.2024.06.009","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Antibodies are powerful modulators of ongoing and future B cell responses. While the concept of antibody feedback has been appreciated for over a century, the topic has seen a surge in interest due to the evidence that the broadening of antibody responses to SARS-CoV-2 after a third mRNA vaccination is a consequence of antibody feedback. Moreover, the discovery that slow antigen delivery can lead to more robust humoral immunity has put a spotlight on the capacity for early antibodies to augment B cell responses. Here, we review the mechanisms whereby antibody feedback shapes B cell responses, integrating findings in humans and in mouse models. We consider the major influence of epitope masking and the diverse actions of complement and Fc receptors and provide a framework for conceptualizing the ways antigen-specific antibodies may influence B cell responses to any form of antigen, in conditions as diverse as infectious disease, autoimmunity, and cancer.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
抗体对 B 细胞反应的调节--结合正反馈和负反馈
抗体是当前和未来 B 细胞反应的强大调节剂。一个多世纪以来,抗体反馈的概念一直受到重视,但由于有证据表明,在接种第三次 mRNA 疫苗后,SARS-CoV-2 的抗体反应范围扩大就是抗体反馈的结果,人们对这一话题的兴趣大增。此外,慢速抗原递送可导致更强大的体液免疫,这一发现使早期抗体增强 B 细胞反应的能力成为焦点。在此,我们综合人类和小鼠模型的研究结果,回顾了抗体反馈影响 B 细胞应答的机制。我们考虑了表位掩蔽的主要影响以及补体和 Fc 受体的不同作用,并提供了一个框架,用于概念化抗原特异性抗体可能影响 B 细胞对任何形式抗原的反应的方式,包括传染病、自身免疫和癌症等各种情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Immunity
Immunity 医学-免疫学
CiteScore
49.40
自引率
2.20%
发文量
205
审稿时长
6 months
期刊介绍: Immunity is a publication that focuses on publishing significant advancements in research related to immunology. We encourage the submission of studies that offer groundbreaking immunological discoveries, whether at the molecular, cellular, or whole organism level. Topics of interest encompass a wide range, such as cancer, infectious diseases, neuroimmunology, autoimmune diseases, allergies, mucosal immunity, metabolic diseases, and homeostasis.
期刊最新文献
Cancer cells restrict immunogenicity of retrotransposon expression via distinct mechanisms A pan-family screen of nuclear receptors in immunocytes reveals ligand-dependent inflammasome control Acute suppression of mitochondrial ATP production prevents apoptosis and provides an essential signal for NLRP3 inflammasome activation Targeting the aminopeptidase ERAP enhances antitumor immunity by disrupting the NKG2A-HLA-E inhibitory checkpoint CAR T cells in autoimmune disease: On the road to remission
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1