A Fully Biodegradable and Ultra-Sensitive Crack-Based Strain Sensor for Biomechanical Signal Monitoring

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Functional Materials Pub Date : 2024-07-09 DOI:10.1002/adfm.202406035
Jae-Hwan Lee, Jae-Young Bae, Yoon-Nam Kim, Minseong Chae, Woo-Jin Lee, Junsang Lee, Im-Deok Kim, Jung Keun Hyun, Kang-Sik Lee, Daeshik Kang, Seung-Kyun Kang
{"title":"A Fully Biodegradable and Ultra-Sensitive Crack-Based Strain Sensor for Biomechanical Signal Monitoring","authors":"Jae-Hwan Lee, Jae-Young Bae, Yoon-Nam Kim, Minseong Chae, Woo-Jin Lee, Junsang Lee, Im-Deok Kim, Jung Keun Hyun, Kang-Sik Lee, Daeshik Kang, Seung-Kyun Kang","doi":"10.1002/adfm.202406035","DOIUrl":null,"url":null,"abstract":"A fully biodegradable, ultra-sensitive, and soft strain sensor is pivotal for temporary, real-time monitoring of microdeformations, crucial in disease diagnosis, surgical precision, and prognosis of muscular, and vascular conditions. Nevertheless, the strain sensitivity of previous biodegradable sensors, denoted by gauge factor (GF) up to ≈100, falls short of requirements for complex biomedical monitoring scenarios, specifically monitoring cardio-cerebrovascular diseases with microscale variations in vascular surface strain. Here, a fully biodegradable, ultra-sensitive crack-based flexible strain sensor is introduced achieving GF of 1355 at 1.5% strain through integration of molybdenum (Mo) film, molybdenum trioxide (MoO<sub>3</sub>) adhesion layer, and polycaprolactone (PCL) substrate. Analysis of crack morphology of biodegradable thin-film metals, including Mo, tungsten (W), and magnesium (Mg), reveals material-dependent sensitivity and repeatability of crack-based strain sensors. The effect of the adhesion layer and polymer substrate is also investigated. Overall morphological studies on the sensor present a comprehensive understanding of metal film cracking behavior and corresponding performance characterization, showing significant potential for highly sensitive sensors. A hybrid membrane composed of candelilla wax (C<sub>w</sub>), beeswax (B<sub>w</sub>), and polybutylene adipate-co-terephthalate (PBAT) is introduced to provide hydrophobic, yet flexible encapsulation. In vivo, short-term (≈3 days) monitoring of vascular pulsatility underscores the potential of the sensing tool for rapid, accurate, and temporal disease diagnosis and treatment.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":null,"pages":null},"PeriodicalIF":18.5000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202406035","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A fully biodegradable, ultra-sensitive, and soft strain sensor is pivotal for temporary, real-time monitoring of microdeformations, crucial in disease diagnosis, surgical precision, and prognosis of muscular, and vascular conditions. Nevertheless, the strain sensitivity of previous biodegradable sensors, denoted by gauge factor (GF) up to ≈100, falls short of requirements for complex biomedical monitoring scenarios, specifically monitoring cardio-cerebrovascular diseases with microscale variations in vascular surface strain. Here, a fully biodegradable, ultra-sensitive crack-based flexible strain sensor is introduced achieving GF of 1355 at 1.5% strain through integration of molybdenum (Mo) film, molybdenum trioxide (MoO3) adhesion layer, and polycaprolactone (PCL) substrate. Analysis of crack morphology of biodegradable thin-film metals, including Mo, tungsten (W), and magnesium (Mg), reveals material-dependent sensitivity and repeatability of crack-based strain sensors. The effect of the adhesion layer and polymer substrate is also investigated. Overall morphological studies on the sensor present a comprehensive understanding of metal film cracking behavior and corresponding performance characterization, showing significant potential for highly sensitive sensors. A hybrid membrane composed of candelilla wax (Cw), beeswax (Bw), and polybutylene adipate-co-terephthalate (PBAT) is introduced to provide hydrophobic, yet flexible encapsulation. In vivo, short-term (≈3 days) monitoring of vascular pulsatility underscores the potential of the sensing tool for rapid, accurate, and temporal disease diagnosis and treatment.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于生物力学信号监测的全生物降解超灵敏裂缝应变传感器
完全可生物降解、超灵敏、柔软的应变传感器对于临时、实时监测微变形至关重要,而微变形对于疾病诊断、手术精确度以及肌肉和血管状况的预后至关重要。然而,以往生物可降解传感器的应变灵敏度(GF)最高为≈100,无法满足复杂的生物医学监测要求,特别是监测心脑血管疾病时血管表面应变的微尺度变化。本文介绍了一种完全可生物降解、超灵敏的基于裂纹的柔性应变传感器,通过整合钼(Mo)薄膜、三氧化钼(MoO3)粘附层和聚己内酯(PCL)基底,在 1.5% 应变时实现了 1355 GF。对包括钼、钨(W)和镁(Mg)在内的可生物降解薄膜金属的裂纹形态分析表明,基于裂纹的应变传感器的灵敏度和可重复性与材料有关。此外,还研究了粘附层和聚合物基底的影响。对传感器的整体形态研究全面揭示了金属膜的开裂行为和相应的性能特征,显示出高灵敏度传感器的巨大潜力。由蜡烛树蜡(Cw)、蜂蜡(Bw)和聚己二酸丁二醇酯-对苯二甲酸丁二酯(PBAT)组成的混合膜可提供疏水性和柔性封装。在体内对血管搏动性进行短期(≈3 天)监测,凸显了这种传感工具在快速、准确和临时性疾病诊断和治疗方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
期刊最新文献
Controlled Chemical-Patterning of Textile to Accelerate Anti-Gravity Water Flow Single-Atom Catalyst Induced Amorphous Li2O2 Layer Enduring Lithium–Oxygen Batteries with High Capacity Smart Fabrics with Integrated Pathogen Detection, Repellency, and Antimicrobial Properties for Healthcare Applications Multi-Point Collaborative Passivation of Surface Defects for Efficient and Stable Perovskite Solar Cells Optoelectronic Neuromorphic Logic Memory Device Based on Ga2O3/MoS2 Van der Waals Heterostructure with High Rectification and On/Off Ratios
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1