Electrochemical CO2 Reduction to Multicarbon Products on Non-Copper Based Catalysts.

IF 7.5 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY ChemSusChem Pub Date : 2025-01-02 Epub Date: 2024-09-03 DOI:10.1002/cssc.202401173
Jiayi Huang, Qianwen Liu, Jianmei Huang, Ming Xu, Wenchuan Lai, Zhiyuan Gu
{"title":"Electrochemical CO<sub>2</sub> Reduction to Multicarbon Products on Non-Copper Based Catalysts.","authors":"Jiayi Huang, Qianwen Liu, Jianmei Huang, Ming Xu, Wenchuan Lai, Zhiyuan Gu","doi":"10.1002/cssc.202401173","DOIUrl":null,"url":null,"abstract":"<p><p>Electrochemical CO<sub>2</sub> reduction reaction (eCO<sub>2</sub>RR) to value-added multicarbon (C<sub>2+</sub>) products offers a promising approach for achieving carbon neutrality and storing intermittent renewable energy. Copper (Cu)-based electrocatalysts generally play the predominant role in this process. Yet recently, more and more non-Cu materials have demonstrated the capability to convert CO<sub>2</sub> into C<sub>2+</sub>, which provides impressive production efficiency even exceeding those on Cu, and a wider variety of C<sub>2+</sub> compounds not achievable with Cu counterparts. This motivates us to organize the present review to make a timely and tutorial summary of recent progresses on developing non-Cu based catalysts for CO<sub>2</sub>-to-C<sub>2+</sub>. We begin by elucidating the reaction pathways for C<sub>2+</sub> formation, with an emphasis on the unique C-C coupling mechanisms in non-Cu electrocatalysts. Subsequently, we summarize the typical C<sub>2+</sub>-involved non-Cu catalysts, including ds-, d- and p-block metals, as well as metal-free materials, presenting the state-of-the-art design strategies to enhance C<sub>2+</sub> efficiency. The system upgrading to promote C<sub>2+</sub> productivity on non-Cu electrodes covering microbial electrosynthesis, electrolyte engineering, regulation of operational conditions, and synergistic co-electrolysis, is highlighted as well. Our review concludes with an exploration of the challenges and future opportunities in this rapidly evolving field.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202401173"},"PeriodicalIF":7.5000,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202401173","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/3 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Electrochemical CO2 reduction reaction (eCO2RR) to value-added multicarbon (C2+) products offers a promising approach for achieving carbon neutrality and storing intermittent renewable energy. Copper (Cu)-based electrocatalysts generally play the predominant role in this process. Yet recently, more and more non-Cu materials have demonstrated the capability to convert CO2 into C2+, which provides impressive production efficiency even exceeding those on Cu, and a wider variety of C2+ compounds not achievable with Cu counterparts. This motivates us to organize the present review to make a timely and tutorial summary of recent progresses on developing non-Cu based catalysts for CO2-to-C2+. We begin by elucidating the reaction pathways for C2+ formation, with an emphasis on the unique C-C coupling mechanisms in non-Cu electrocatalysts. Subsequently, we summarize the typical C2+-involved non-Cu catalysts, including ds-, d- and p-block metals, as well as metal-free materials, presenting the state-of-the-art design strategies to enhance C2+ efficiency. The system upgrading to promote C2+ productivity on non-Cu electrodes covering microbial electrosynthesis, electrolyte engineering, regulation of operational conditions, and synergistic co-electrolysis, is highlighted as well. Our review concludes with an exploration of the challenges and future opportunities in this rapidly evolving field.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在非铜基催化剂上用电化学方法将二氧化碳还原成多碳产品。
电化学二氧化碳还原反应(eCO2RR)将二氧化碳转化为高附加值的多碳(C2+)产品,为实现碳中和和储存间歇性可再生能源提供了一种前景广阔的方法。以铜(Cu)为基础的电催化剂通常在这一过程中发挥主导作用。然而,最近越来越多的非铜材料已经证明了将 CO2 转化为 C2+ 的能力,其生产效率甚至超过了铜材料,并提供了铜材料无法实现的更多种类的 C2+ 化合物。这促使我们组织本综述,对开发 CO2 转化为 C2+ 的非铜基催化剂的最新进展进行及时的指导性总结。我们首先阐明了 C2+ 生成的反应途径,重点介绍了非铜电催化剂中独特的 C-C 耦合机制。随后,我们总结了典型的 C2+ 参与的非铜催化剂,包括 ds-、d- 和 p-嵌段金属以及无金属材料,并介绍了提高 C2+ 效率的最新设计策略。此外,还重点介绍了在非铜电极上提高 C2+ 生产率的系统升级,包括微生物电合成、电解质工程、操作条件调节和协同共电解。最后,我们还探讨了这一快速发展领域的挑战和未来机遇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
期刊最新文献
Two-Dimensional BiOCl Nanosheet-Encapsulated Cu2O Octahedra: p-n Junction Photocatalysts for Efficient Visible Light Driven CO2-to-CH4 Conversion. Arginine as a multifunctional additive for high performance S-cathode. Complete Aqueous Defluorination of GenX (Hexafluoropropylene Oxide Dimer Acid Anion) by Pulsed Electrolysis with Polarity Reversal. A Chemically Robust 2D Ni-MOF as an Efficient Heterogeneous Catalyst for One-Pot Synthesis of Therapeutic and Bioactive 2-Amino-3-Cyano-4H-Pyran Derivatives. Electrochemical CO2 Reduction to Multicarbon Products on Non-Copper Based Catalysts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1