Pre-Intercalation of TMA Cations in MoS2 Interlayers for Fast and Stable Zinc Ion Storage.

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Small Pub Date : 2024-07-10 DOI:10.1002/smll.202403050
Diheng Xin, Xianchi Zhang, Zhanrui Zhang, Jie Sun, Qi Li, Xuexia He, Ruibin Jiang, Zonghuai Liu, Zhibin Lei
{"title":"Pre-Intercalation of TMA Cations in MoS<sub>2</sub> Interlayers for Fast and Stable Zinc Ion Storage.","authors":"Diheng Xin, Xianchi Zhang, Zhanrui Zhang, Jie Sun, Qi Li, Xuexia He, Ruibin Jiang, Zonghuai Liu, Zhibin Lei","doi":"10.1002/smll.202403050","DOIUrl":null,"url":null,"abstract":"<p><p>Applications of aqueous zinc ion batteries (ZIBs) for grid-scale energy storage are hindered by the lacking of stable cathodes with large capacity and fast redox kinetics. Herein, the intercalation of tetramethylammonium (TMA<sup>+</sup>) cations is reported into MoS<sub>2</sub> interlayers to expand its spacing from 0.63 to 1.06 nm. The pre-intercalation of TMA<sup>+</sup> induces phase transition of MoS<sub>2</sub> from 2H to 1T phase, contributing to an enhanced conductivity and better wettability. Besides, The calculation from density functional theory indicates that those TMA<sup>+</sup> can effectively shield the interactions between Zn<sup>2+</sup> and MoS<sub>2</sub> layers. Consequently, two orders magnitude high Zn<sup>2+</sup> ions diffusion coefficient and 11 times enhancement in specific capacity (212.4 vs 18.9 mAh g<sup>‒1</sup> at 0.1 A g<sup>‒1</sup>) are achieved. The electrochemical investigations reveal both Zn<sup>2+</sup> and H<sup>+</sup> can be reversibly co-inserted into the MoS<sub>2</sub>-TMA electrode. Moreover, the steady habitat of TMA<sup>+</sup> between MoS<sub>2</sub> interlayers affords the MoS<sub>2</sub>-TMA with remarkable cycling stability (90.1% capacity retention after 2000 cycles at 5.0 A g<sup>‒1</sup>). These performances are superior to most of the recent zinc ion batteries assembled with MoS<sub>2</sub> or VS<sub>2</sub>-based cathodes. This work offers a new avenue to tuning the structure of MoS<sub>2</sub> for aqueous ZIBs.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":null,"pages":null},"PeriodicalIF":13.0000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202403050","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Applications of aqueous zinc ion batteries (ZIBs) for grid-scale energy storage are hindered by the lacking of stable cathodes with large capacity and fast redox kinetics. Herein, the intercalation of tetramethylammonium (TMA+) cations is reported into MoS2 interlayers to expand its spacing from 0.63 to 1.06 nm. The pre-intercalation of TMA+ induces phase transition of MoS2 from 2H to 1T phase, contributing to an enhanced conductivity and better wettability. Besides, The calculation from density functional theory indicates that those TMA+ can effectively shield the interactions between Zn2+ and MoS2 layers. Consequently, two orders magnitude high Zn2+ ions diffusion coefficient and 11 times enhancement in specific capacity (212.4 vs 18.9 mAh g‒1 at 0.1 A g‒1) are achieved. The electrochemical investigations reveal both Zn2+ and H+ can be reversibly co-inserted into the MoS2-TMA electrode. Moreover, the steady habitat of TMA+ between MoS2 interlayers affords the MoS2-TMA with remarkable cycling stability (90.1% capacity retention after 2000 cycles at 5.0 A g‒1). These performances are superior to most of the recent zinc ion batteries assembled with MoS2 or VS2-based cathodes. This work offers a new avenue to tuning the structure of MoS2 for aqueous ZIBs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在 MoS2 夹层中预钙化 TMA 阳离子,实现快速稳定的锌离子存储。
由于缺乏具有大容量和快速氧化还原动力学的稳定阴极,锌离子水电池(ZIBs)在电网规模储能方面的应用受到了阻碍。本文报告了在 MoS2 夹层中插层四甲基铵(TMA+)阳离子的情况,从而将其间距从 0.63 纳米扩大到 1.06 纳米。TMA+ 的预共价诱导了 MoS2 从 2H 相到 1T 相的相变,从而提高了导电性和润湿性。此外,密度泛函理论的计算表明,TMA+ 能有效屏蔽 Zn2+ 与 MoS2 层之间的相互作用。因此,Zn2+ 离子扩散系数提高了两个数量级,比容量提高了 11 倍(0.1 A g-1 时为 212.4 mAh g-1 与 18.9 mAh g-1)。电化学研究表明,Zn2+ 和 H+ 可以可逆地共同插入 MoS2-TMA 电极。此外,MoS2 夹层之间 TMA+ 的稳定栖息使 MoS2-TMA 具有显著的循环稳定性(在 5.0 A g-1 条件下循环 2000 次后容量保持率为 90.1%)。这些性能优于最近大多数使用 MoS2 或 VS2 阴极组装的锌离子电池。这项研究为水性锌离子电池调整 MoS2 结构提供了一条新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
期刊最新文献
Achieving Optical Refractive Index of 10-Plus by Colloidal Self-Assembly. Advances and Prospects in Liquid Biopsy Techniques for Malignant Tumor Diagnosis and Surveillance. Delivery of Synthetic Interleukin-22 mRNA to Hepatocytes via Lipid Nanoparticles Alleviates Liver Injury. Hydrodynamics and Aggregation of Nanoparticles with Protein Corona: Effects of Protein Concentration and Ionic Strength. Incorporating Zinc Metal Sites in Aluminum-Coordinated Porphyrin Metal-Organic Frameworks for Enhanced Photocatalytic Nitrogen Reduction to Ammonia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1