Biodegradable plastics: mechanisms of degradation and generated bio microplastic impact on soil health.

IF 3.1 4区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Biodegradation Pub Date : 2024-07-10 DOI:10.1007/s10532-024-10092-3
Rishpreet Kaur, Indu Chauhan
{"title":"Biodegradable plastics: mechanisms of degradation and generated bio microplastic impact on soil health.","authors":"Rishpreet Kaur, Indu Chauhan","doi":"10.1007/s10532-024-10092-3","DOIUrl":null,"url":null,"abstract":"<p><p>Conventional petroleum-derived polymers are valued for their versatility and are widely used, owing to their characteristics such as cost-effectiveness, diverse physical and chemical qualities, lower molecular weight, and easy processability for large-scale production. However, the extensive accumulation of such plastics leads to serious environmental issues. To combat this existing situation, an alternative lies in the production of bioplastics from natural and renewable sources such as plants, animals, microbes, etc. Bioplastics obtained from renewable sources are compostable and susceptible to degradation caused by microbes hydrolyzing to CO<sub>2</sub>, CH<sub>4,</sub> and biomass. Also, certain additives are reinforced into the bioplastic films to improve their physicochemical properties and degradation rate. However, on degradation, the bio-microplastic (BM) produced could have positive as well as negative impact on the soil health. This article thus focuses on the degradation of various fossil based as well as bio based biodegradable plastics such as polyhydroxyalkanoates (PHA), polyhydroxy butyrate (PHB), polylactic acid (PLA), polybutylene succinate (PBS), polycaprolactone (PCL), and polysaccharide derived bioplastics by mechanical, thermal, photodegradation and microbial approaches. The degradation mechanism of each approach has been discussed in detailed for different bioplastics. How the incorporation or reinforcement of various additives in the biodegradable plastics effects their degradation rates has also been discussed. In addition to that, the impact of generated bio-microplastic on physicochemical properties of soil such as pH, bulk density, carbon, nitrogen content etc. and biological properties such as on genome of native soil microbes and on plant nutritional health have been discussed in detailed.</p>","PeriodicalId":486,"journal":{"name":"Biodegradation","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biodegradation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10532-024-10092-3","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Conventional petroleum-derived polymers are valued for their versatility and are widely used, owing to their characteristics such as cost-effectiveness, diverse physical and chemical qualities, lower molecular weight, and easy processability for large-scale production. However, the extensive accumulation of such plastics leads to serious environmental issues. To combat this existing situation, an alternative lies in the production of bioplastics from natural and renewable sources such as plants, animals, microbes, etc. Bioplastics obtained from renewable sources are compostable and susceptible to degradation caused by microbes hydrolyzing to CO2, CH4, and biomass. Also, certain additives are reinforced into the bioplastic films to improve their physicochemical properties and degradation rate. However, on degradation, the bio-microplastic (BM) produced could have positive as well as negative impact on the soil health. This article thus focuses on the degradation of various fossil based as well as bio based biodegradable plastics such as polyhydroxyalkanoates (PHA), polyhydroxy butyrate (PHB), polylactic acid (PLA), polybutylene succinate (PBS), polycaprolactone (PCL), and polysaccharide derived bioplastics by mechanical, thermal, photodegradation and microbial approaches. The degradation mechanism of each approach has been discussed in detailed for different bioplastics. How the incorporation or reinforcement of various additives in the biodegradable plastics effects their degradation rates has also been discussed. In addition to that, the impact of generated bio-microplastic on physicochemical properties of soil such as pH, bulk density, carbon, nitrogen content etc. and biological properties such as on genome of native soil microbes and on plant nutritional health have been discussed in detailed.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
生物降解塑料:降解机制和生物微塑料对土壤健康的影响。
传统的石油衍生聚合物具有成本效益高、物理和化学性质多样、分子量较低、易于加工以进行大规模生产等特点,因此其多功能性备受推崇,并得到广泛应用。然而,此类塑料的大量累积导致了严重的环境问题。为了应对这一现状,一种替代方法是利用植物、动物、微生物等天然可再生资源生产生物塑料。从可再生资源中获得的生物塑料可堆肥,并且容易被微生物水解为二氧化碳、甲烷和生物质而降解。此外,生物塑料薄膜中还添加了某些添加剂,以改善其物理化学特性和降解率。然而,降解产生的生物微塑料(BM)可能会对土壤健康产生积极或消极的影响。因此,本文重点研究了各种化石基和生物基生物降解塑料的降解问题,如聚羟基烷酸酯(PHA)、聚羟基丁酸酯(PHB)、聚乳酸(PLA)、聚丁二酸丁二醇酯(PBS)、聚己内酯(PCL)和多糖衍生生物塑料,研究方法包括机械降解、热降解、光降解和微生物降解。针对不同的生物塑料,详细讨论了每种方法的降解机理。此外,还讨论了在生物降解塑料中加入或加强各种添加剂如何影响其降解率。此外,还详细讨论了生成的生物微塑料对土壤理化性质(如 pH 值、容重、碳、氮含量等)和生物性质(如对本地土壤微生物基因组和植物营养健康)的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biodegradation
Biodegradation 工程技术-生物工程与应用微生物
CiteScore
5.60
自引率
0.00%
发文量
36
审稿时长
6 months
期刊介绍: Biodegradation publishes papers, reviews and mini-reviews on the biotransformation, mineralization, detoxification, recycling, amelioration or treatment of chemicals or waste materials by naturally-occurring microbial strains, microbial associations, or recombinant organisms. Coverage spans a range of topics, including Biochemistry of biodegradative pathways; Genetics of biodegradative organisms and development of recombinant biodegrading organisms; Molecular biology-based studies of biodegradative microbial communities; Enhancement of naturally-occurring biodegradative properties and activities. Also featured are novel applications of biodegradation and biotransformation technology, to soil, water, sewage, heavy metals and radionuclides, organohalogens, high-COD wastes, straight-, branched-chain and aromatic hydrocarbons; Coverage extends to design and scale-up of laboratory processes and bioreactor systems. Also offered are papers on economic and legal aspects of biological treatment of waste.
期刊最新文献
Biodegradation of low-density polythene (LDPE) by a novel strain of Pseudomonas aeruginosa WD4 isolated from plastic dumpsite. Isolation and characterization of distinctive pyrene-degrading bacteria from an uncontaminated soil. Enhancing bioremediation potential of microalgae Chlorella vulgaris and Scenedesmus acutus by NaCl for pyrene degradation. Biodegradation of polyethylene terephthalate (PET) by Brucella intermedia IITR130 and its proposed metabolic pathway. Biodegradation of a complex hydrocarbon mixture and biosurfactant production by Burkholderia thailandensis E264 and an adapted microbial consortium.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1