Adipose Tissue-Derived Mesenchymal Stromal Cells Modulate Inflammatory Response and Improve Allograft Islet Transplant in Mice Model of Type 1 Diabetes.
{"title":"Adipose Tissue-Derived Mesenchymal Stromal Cells Modulate Inflammatory Response and Improve Allograft Islet Transplant in Mice Model of Type 1 Diabetes.","authors":"Bahare Niknam, Jamal Mohammadi Ayenehdeh, Nikoo Hossein-Khannazer, Massoud Vosough, Nader Tajik","doi":"10.1080/07435800.2024.2377286","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Type 1 diabetes mellitus (T1DM) is an autoimmune disease where immune cells attack insulin-producing beta cells. Islet transplantation is a promising treatment for T1DM. This study aims to evaluate the effects of adipose tissue-derived mesenchymal stem cells (AT-MSCs) in combination with pancreatic islet transplantation using hydrogel.</p><p><strong>Methods: </strong>T1DM mouse model was established using streptozotocin (STZ). Islets and AT-MSCs were co-embedded in a hydrogel and transplanted into diabetic mice. Five groups with six animals in each (control, hydrogel alone, AT-MSCs embedded hydrogel, islet embedded in hydrogel, and islet + AT-MSCs co-imbedded into a hydrogel) were evaluated in terms of blood glucose, insulin levels and serum and lavage cytokine production.</p><p><strong>Results: </strong>During 32 days, blood glucose levels decreased from over 400 mg/dl to less than 150 mg/dl in the transplanted mice. Analysis showed increased transformation growth factor beta (TGF-β1) and IL-4 levels, while IL-17 and IFN-γ levels significantly decreased in the MSC-treated groups.</p><p><strong>Conclusion: </strong>These findings suggest that using AT-MSCs with hydrogel could be a beneficial alternative for enhancing pancreatic islet engraftment and function.</p>","PeriodicalId":11601,"journal":{"name":"Endocrine Research","volume":" ","pages":"223-231"},"PeriodicalIF":1.5000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Endocrine Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/07435800.2024.2377286","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/9 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: Type 1 diabetes mellitus (T1DM) is an autoimmune disease where immune cells attack insulin-producing beta cells. Islet transplantation is a promising treatment for T1DM. This study aims to evaluate the effects of adipose tissue-derived mesenchymal stem cells (AT-MSCs) in combination with pancreatic islet transplantation using hydrogel.
Methods: T1DM mouse model was established using streptozotocin (STZ). Islets and AT-MSCs were co-embedded in a hydrogel and transplanted into diabetic mice. Five groups with six animals in each (control, hydrogel alone, AT-MSCs embedded hydrogel, islet embedded in hydrogel, and islet + AT-MSCs co-imbedded into a hydrogel) were evaluated in terms of blood glucose, insulin levels and serum and lavage cytokine production.
Results: During 32 days, blood glucose levels decreased from over 400 mg/dl to less than 150 mg/dl in the transplanted mice. Analysis showed increased transformation growth factor beta (TGF-β1) and IL-4 levels, while IL-17 and IFN-γ levels significantly decreased in the MSC-treated groups.
Conclusion: These findings suggest that using AT-MSCs with hydrogel could be a beneficial alternative for enhancing pancreatic islet engraftment and function.
期刊介绍:
This journal publishes original articles relating to endocrinology in the broadest context. Subjects of interest include: receptors and mechanism of action of hormones, methodological advances in the detection and measurement of hormones; structure and chemical properties of hormones. Invitations to submit Brief Reviews are issued to specific authors by the Editors.