Demonstrating the use of population level data to investigate trends in the rate, radiation dose and cost of Computed Tomography across clinical groups: Are there any areas of concern?
Sviatlana Kamarova, David Youens, Ninh T Ha, Max Bulsara, Jenny Doust, Richard Fox, Marlene Kritz, Donald McRobbie, Peter O'Leary, Paul M Parizel, John Slavotinek, Cameron Wright, Rachael Moorin
{"title":"Demonstrating the use of population level data to investigate trends in the rate, radiation dose and cost of Computed Tomography across clinical groups: Are there any areas of concern?","authors":"Sviatlana Kamarova, David Youens, Ninh T Ha, Max Bulsara, Jenny Doust, Richard Fox, Marlene Kritz, Donald McRobbie, Peter O'Leary, Paul M Parizel, John Slavotinek, Cameron Wright, Rachael Moorin","doi":"10.1002/jmrs.811","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Increases in computed tomography (CT) use may not always reflect clinical need or improve outcomes. This study aimed to demonstrate how population level data can be used to identify variations in care between patient groups, by analysing system-level changes in CT use around the diagnosis of new conditions.</p><p><strong>Methods: </strong>Retrospective repeated cross-sectional observational study using West Australian linked administrative records, including 504,723 adults diagnosed with different conditions in 2006, 2012 and 2015. For 90 days pre/post diagnosis, CT use (any and 2+ scans), effective dose (mSv), lifetime attributable risk (LAR) of cancer incidence and mortality from CT, and costs were assessed.</p><p><strong>Results: </strong>CT use increased from 209.4 per 1000 new diagnoses in 2006 to 258.0 in 2015; increases were observed for all conditions except neoplasms. Healthcare system costs increased for all conditions but neoplasms and mental disorders. Effective dose increased substantially for respiratory (+2.5 mSv, +23.1%, P < 0.001) and circulatory conditions (+2.1 mSv, +15.4%, P < 0.001). The LAR of cancer incidence and mortality from CT increased for endocrine (incidence +23.4%, mortality +18.0%) and respiratory disorders (+21.7%, +23.3%). Mortality LAR increased for circulatory (+12.1%) and nervous system (+11.0%) disorders. The LAR of cancer incidence and mortality reduced for musculoskeletal system disorders, despite an increase in repeated CT in this group.</p><p><strong>Conclusions: </strong>Use and costs increased for most conditions except neoplasms and mental and behavioural disorders. More strategic CT use may have occurred in musculoskeletal conditions, while use and radiation burden increased for respiratory, circulatory and nervous system conditions. Using this high-level approach we flag areas requiring deeper investigation into appropriateness and value of care.</p>","PeriodicalId":16382,"journal":{"name":"Journal of Medical Radiation Sciences","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Radiation Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/jmrs.811","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Increases in computed tomography (CT) use may not always reflect clinical need or improve outcomes. This study aimed to demonstrate how population level data can be used to identify variations in care between patient groups, by analysing system-level changes in CT use around the diagnosis of new conditions.
Methods: Retrospective repeated cross-sectional observational study using West Australian linked administrative records, including 504,723 adults diagnosed with different conditions in 2006, 2012 and 2015. For 90 days pre/post diagnosis, CT use (any and 2+ scans), effective dose (mSv), lifetime attributable risk (LAR) of cancer incidence and mortality from CT, and costs were assessed.
Results: CT use increased from 209.4 per 1000 new diagnoses in 2006 to 258.0 in 2015; increases were observed for all conditions except neoplasms. Healthcare system costs increased for all conditions but neoplasms and mental disorders. Effective dose increased substantially for respiratory (+2.5 mSv, +23.1%, P < 0.001) and circulatory conditions (+2.1 mSv, +15.4%, P < 0.001). The LAR of cancer incidence and mortality from CT increased for endocrine (incidence +23.4%, mortality +18.0%) and respiratory disorders (+21.7%, +23.3%). Mortality LAR increased for circulatory (+12.1%) and nervous system (+11.0%) disorders. The LAR of cancer incidence and mortality reduced for musculoskeletal system disorders, despite an increase in repeated CT in this group.
Conclusions: Use and costs increased for most conditions except neoplasms and mental and behavioural disorders. More strategic CT use may have occurred in musculoskeletal conditions, while use and radiation burden increased for respiratory, circulatory and nervous system conditions. Using this high-level approach we flag areas requiring deeper investigation into appropriateness and value of care.
期刊介绍:
Journal of Medical Radiation Sciences (JMRS) is an international and multidisciplinary peer-reviewed journal that accepts manuscripts related to medical imaging / diagnostic radiography, radiation therapy, nuclear medicine, medical ultrasound / sonography, and the complementary disciplines of medical physics, radiology, radiation oncology, nursing, psychology and sociology. Manuscripts may take the form of: original articles, review articles, commentary articles, technical evaluations, case series and case studies. JMRS promotes excellence in international medical radiation science by the publication of contemporary and advanced research that encourages the adoption of the best clinical, scientific and educational practices in international communities. JMRS is the official professional journal of the Australian Society of Medical Imaging and Radiation Therapy (ASMIRT) and the New Zealand Institute of Medical Radiation Technology (NZIMRT).