{"title":"On discretising continuous data for subgroup analysis in baseball pitching and alternative analytical methodologies.","authors":"Kevin A Giordano, Kyle W Wasserberger","doi":"10.1080/14763141.2024.2377219","DOIUrl":null,"url":null,"abstract":"<p><p>There is a plethora of research attempting to contrast high- and low-velocity pitchers to identify traits to target for increasing velocity. However, pitch velocity exists on a continuum. Therefore, our purpose is to display the analytical discrepancies between creating velocity subgroups and leaving velocity as a continuous variable by examining the influence of ball velocity on elbow valgus torque. Motion capture data for 1315 actively competing pitchers were retrospectively extracted from a private database. We compared three analytic methods: (1) linear regression of valgus torque on ball velocity, (2) t-test between low- and high-velocity groups formed by a median split, and (3) t-test between very low- and very high-velocity groups formed by upper and lower velocity quartiles. Linear regression indicates ball velocity influenced valgus torque (<i>p</i> < 0.001, R<sup>2</sup> = 0.280). Median splitting reduced the predictability of ball velocity on valgus torque (<i>p</i> < 0.001, R<sup>2</sup> = 0.180). Conversely, extreme group splitting artificially inflated the effect size (<i>p</i> < 0.001, R<sup>2</sup> = 0.347). We recommend sports biomechanics researchers not discretise a continuous variable to form subgroups for analysis because (1) it distorts the relationship between the variables of interest and (2) a regression equation can be used to estimate the dependent variable at any value of the independent variable, not just the group means.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/14763141.2024.2377219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
There is a plethora of research attempting to contrast high- and low-velocity pitchers to identify traits to target for increasing velocity. However, pitch velocity exists on a continuum. Therefore, our purpose is to display the analytical discrepancies between creating velocity subgroups and leaving velocity as a continuous variable by examining the influence of ball velocity on elbow valgus torque. Motion capture data for 1315 actively competing pitchers were retrospectively extracted from a private database. We compared three analytic methods: (1) linear regression of valgus torque on ball velocity, (2) t-test between low- and high-velocity groups formed by a median split, and (3) t-test between very low- and very high-velocity groups formed by upper and lower velocity quartiles. Linear regression indicates ball velocity influenced valgus torque (p < 0.001, R2 = 0.280). Median splitting reduced the predictability of ball velocity on valgus torque (p < 0.001, R2 = 0.180). Conversely, extreme group splitting artificially inflated the effect size (p < 0.001, R2 = 0.347). We recommend sports biomechanics researchers not discretise a continuous variable to form subgroups for analysis because (1) it distorts the relationship between the variables of interest and (2) a regression equation can be used to estimate the dependent variable at any value of the independent variable, not just the group means.