The P2X7 Receptor is a Master Regulator of Microparticle and Mitochondria Exchange in Mouse Microglia.

IF 5.1 Q2 CELL BIOLOGY Function (Oxford, England) Pub Date : 2024-07-11 DOI:10.1093/function/zqae019
Simonetta Falzoni, Valentina Vultaggio-Poma, Paola Chiozzi, Mario Tarantini, Elena Adinolfi, Paola Boldrini, Anna Lisa Giuliani, Giampaolo Morciano, Yong Tang, Dariusz C Gorecki, Francesco Di Virgilio
{"title":"The P2X7 Receptor is a Master Regulator of Microparticle and Mitochondria Exchange in Mouse Microglia.","authors":"Simonetta Falzoni, Valentina Vultaggio-Poma, Paola Chiozzi, Mario Tarantini, Elena Adinolfi, Paola Boldrini, Anna Lisa Giuliani, Giampaolo Morciano, Yong Tang, Dariusz C Gorecki, Francesco Di Virgilio","doi":"10.1093/function/zqae019","DOIUrl":null,"url":null,"abstract":"<p><p>Microparticles (MPs) are secreted by all cells, where they play a key role in intercellular communication, differentiation, inflammation, and cell energy transfer. P2X7 receptor (P2X7R) activation by extracellular ATP (eATP) causes a large MP release and affects their contents in a cell-specific fashion. We investigated MP release and functional impact in microglial cells from P2X7R-WT or P2X7R-KO mice, as well as mouse microglial cell lines characterized for high (N13-P2X7RHigh) or low (N13-P2X7RLow) P2X7R expression. P2X7R stimulation promoted release of a mixed MP population enriched with naked mitochondria. Released mitochondria were taken up and incorporated into the mitochondrial network of the recipient cells in a P2X7R-dependent fashion. NLRP3 and the P2X7R itself were also delivered to the recipient cells. Microparticle transfer increased the energy level of the recipient cells and conferred a pro-inflammatory phenotype. These data show that the P2X7R is a master regulator of intercellular organelle and MP trafficking in immune cells.</p>","PeriodicalId":73119,"journal":{"name":"Function (Oxford, England)","volume":" ","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11237899/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Function (Oxford, England)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/function/zqae019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Microparticles (MPs) are secreted by all cells, where they play a key role in intercellular communication, differentiation, inflammation, and cell energy transfer. P2X7 receptor (P2X7R) activation by extracellular ATP (eATP) causes a large MP release and affects their contents in a cell-specific fashion. We investigated MP release and functional impact in microglial cells from P2X7R-WT or P2X7R-KO mice, as well as mouse microglial cell lines characterized for high (N13-P2X7RHigh) or low (N13-P2X7RLow) P2X7R expression. P2X7R stimulation promoted release of a mixed MP population enriched with naked mitochondria. Released mitochondria were taken up and incorporated into the mitochondrial network of the recipient cells in a P2X7R-dependent fashion. NLRP3 and the P2X7R itself were also delivered to the recipient cells. Microparticle transfer increased the energy level of the recipient cells and conferred a pro-inflammatory phenotype. These data show that the P2X7R is a master regulator of intercellular organelle and MP trafficking in immune cells.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
P2×7 受体是小鼠小胶质细胞微粒和线粒体交换的主调节器。
微颗粒(MPs)由所有细胞分泌,在细胞间通信、分化、炎症和细胞能量转移中发挥着关键作用。细胞外 ATP(eATP)激活 P2×7 受体(P2×7R)会导致大量 MP 释放,并以细胞特异的方式影响其内容。我们研究了来自 P2×7R-WT 或 P2×7R-KO 小鼠以及高(N13-P2×7RHigh)或低(N13-P2×7RLow)P2×7R 表达的小鼠小胶质细胞系的 MP 释放和功能影响。P2×7R 刺激促进了富含裸线粒体的混合 MP 群体的释放。释放的线粒体以 P2×7R 依赖性方式被吸收并整合到受体细胞的线粒体网络中。NLRP3 和 P2×7R 本身也被输送到受体细胞。MP 转移提高了受体细胞的能量水平,并产生了促炎表型。这些数据表明,P2×7R 是免疫细胞中细胞器间和 MP 转运的主调控因子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.70
自引率
0.00%
发文量
0
审稿时长
3 weeks
期刊最新文献
Loss of STIM1 and STIM2 in Salivary Glands Disrupts ANO1 Function but Does Not Induce Sjogren's Disease. Thick Ascending Limb Specific Inactivation of Myh9 and Myh10 Myosin Motors Results in Progressive Kidney Disease and Drives Sex-specific Cellular Adaptation in the Distal Nephron and Collecting Duct. Pancreatic Ductal Adenocarcinoma, β-blockers, and Antihistamines: A Clinical Trial Is Needed. Molecular and Functional Characterization of the Peritoneal Mesothelium, a Barrier for Solute Transport. The Core Circadian Clock Factor, Bmal1, Transduces Sex-specific Differences in Both Rhythmic and Nonrhythmic Gene Expression in the Mouse Heart.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1