A Potential Surface Warming Regime for Volcanic Super-Eruptions Through Stratospheric Water Vapor Increases

IF 3.8 2区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES Journal of Geophysical Research: Atmospheres Pub Date : 2024-07-08 DOI:10.1029/2023JD038667
Scott D. Guzewich, Luke D. Oman, Peter R. Colarco, Jacob A. Richardson, Patrick L. Whelley, Thomas J. Fauchez, Ravi K. Kopparapu, Sandra T. Bastelberger
{"title":"A Potential Surface Warming Regime for Volcanic Super-Eruptions Through Stratospheric Water Vapor Increases","authors":"Scott D. Guzewich,&nbsp;Luke D. Oman,&nbsp;Peter R. Colarco,&nbsp;Jacob A. Richardson,&nbsp;Patrick L. Whelley,&nbsp;Thomas J. Fauchez,&nbsp;Ravi K. Kopparapu,&nbsp;Sandra T. Bastelberger","doi":"10.1029/2023JD038667","DOIUrl":null,"url":null,"abstract":"<p>Large volcanic eruptions are known to influence the climate through a variety of mechanisms including aerosol-forced cooling and warming via emitted CO<sub>2</sub>. The January 2022 Hunga shallow underwater eruption caused an increase in stratospheric water vapor, and demonstrated how the associated positive radiative forcing can be an important component of an eruption's climate forcing. We present interactive stratospheric aerosol model simulations of super-volcanic eruptions with a range of SO<sub>2</sub> emissions that can produce climate warming through feedback effects produced by a large igneous province (or “flood basalt”) mid-latitude super-eruption using Goddard Earth Observing System Chemistry Climate Model climate model simulations. The model experiments suggest total SO<sub>2</sub> emissions ≳4,000 Tg/4 Gt generate a multi-year period of sustained aerosol absorptive local-heating of the upper troposphere and lower stratosphere and hence produce net climate warming after strong initial cooling. The eruptions produce stratospheric water vapor increases of factors of 8–600. The initiation of these feedbacks within the simulations suggest they could occur for individual stratovolcano eruptions of the scale of the Toba or Tambora eruptions. We note the sensitivity of our results to volcanic sulfate aerosol microphysics and model chemistry.</p>","PeriodicalId":15986,"journal":{"name":"Journal of Geophysical Research: Atmospheres","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Atmospheres","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2023JD038667","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Large volcanic eruptions are known to influence the climate through a variety of mechanisms including aerosol-forced cooling and warming via emitted CO2. The January 2022 Hunga shallow underwater eruption caused an increase in stratospheric water vapor, and demonstrated how the associated positive radiative forcing can be an important component of an eruption's climate forcing. We present interactive stratospheric aerosol model simulations of super-volcanic eruptions with a range of SO2 emissions that can produce climate warming through feedback effects produced by a large igneous province (or “flood basalt”) mid-latitude super-eruption using Goddard Earth Observing System Chemistry Climate Model climate model simulations. The model experiments suggest total SO2 emissions ≳4,000 Tg/4 Gt generate a multi-year period of sustained aerosol absorptive local-heating of the upper troposphere and lower stratosphere and hence produce net climate warming after strong initial cooling. The eruptions produce stratospheric water vapor increases of factors of 8–600. The initiation of these feedbacks within the simulations suggest they could occur for individual stratovolcano eruptions of the scale of the Toba or Tambora eruptions. We note the sensitivity of our results to volcanic sulfate aerosol microphysics and model chemistry.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过平流层水汽增加实现火山超级爆发的潜在地表变暖机制
众所周知,大型火山爆发会通过各种机制影响气候,包括气溶胶导致的降温和通过排放的二氧化碳导致的升温。2022 年 1 月的洪加浅层水下火山爆发导致平流层水汽增加,并证明了相关的正辐射强迫是火山爆发气候强迫的重要组成部分。我们利用戈达德地球观测系统化学气候模式气候模型模拟了超级火山爆发的平流层气溶胶互动模型模拟,其二氧化硫排放范围可通过大型火成岩带(或 "洪水玄武岩")中纬度超级火山爆发产生的反馈效应导致气候变暖。模型实验表明,二氧化硫总排放量≳4,000 Tg/4 Gt 会在对流层上部和平流层下部产生持续多年的气溶胶吸收性局部加热,从而在最初的强降温之后产生气候净变暖。喷发造成平流层水汽增加 8-600 倍。模拟中出现的这些反馈表明,在单个平流层火山爆发时,可能会出现像托巴火山或坦博拉火山爆发那样的规模。我们注意到我们的结果对火山硫酸盐气溶胶微物理和模型化学的敏感性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Geophysical Research: Atmospheres
Journal of Geophysical Research: Atmospheres Earth and Planetary Sciences-Geophysics
CiteScore
7.30
自引率
11.40%
发文量
684
期刊介绍: JGR: Atmospheres publishes articles that advance and improve understanding of atmospheric properties and processes, including the interaction of the atmosphere with other components of the Earth system.
期刊最新文献
Using Iron Stable Isotopes to Quantify the Origins of the Cryoconite Iron Materials in Western China and Exploring Controlling Factors Novel Comparison of Pyrocumulonimbus Updrafts to Volcanic Eruptions and Supercell Thunderstorms Using Optical Flow Techniques Methane Emissions From Seabed to Atmosphere in Polar Oceans Revealed by Direct Methane Flux Measurements The Potential Role of Seasonal Surface Heating on the Chaotic Origins of the El Niño/Southern Oscillation Spring Predictability Barrier Asymmetry in the Diurnal Variation of Land Surface Albedo and Its Impacts on Daily Mean Albedo Estimation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1