Flat-band ferromagnetism in the quasi-one-dimensional electride Y2Cl3 induced by hole doping

IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy Physical Review B Pub Date : 2024-07-10 DOI:10.1103/physrevb.110.024413
Shuyuan Liu, Chongze Wang, Bing Wang, Yu Jia, J. Cho
{"title":"Flat-band ferromagnetism in the quasi-one-dimensional electride Y2Cl3 induced by hole doping","authors":"Shuyuan Liu, Chongze Wang, Bing Wang, Yu Jia, J. Cho","doi":"10.1103/physrevb.110.024413","DOIUrl":null,"url":null,"abstract":"Mielke and Tasaki's theoretical proposal of flatband ferromagnetism with the Hubbard model has attracted much attention due to the promising possibility of ferromagnetic order in electronic materials. Using first-principles density-functional theory calculations and tight-binding analysis, we present hole-doping-induced flatband ferromagnetism in the van der Waals layered insulating electride material <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mi mathvariant=\"normal\">Y</mi><mn>2</mn></msub><msub><mi>Cl</mi><mn>3</mn></msub></mrow></math>, whose structural framework consists of an array of weakly coupled one-dimensional (1D) Y wires. It is revealed that <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mi mathvariant=\"normal\">Y</mi><mn>2</mn></msub><msub><mi>Cl</mi><mn>3</mn></msub></mrow></math>, featuring a 1D paired, puckered diamond lattice of Y atoms, possesses three occupied valence states: the first- and second-highest (<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>S</mi><mn>1</mn></msub></math> and <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>S</mi><mn>2</mn></msub></math>) states give rise to flatbands due to the destructive interference of Bloch wavefunctions, whereas the third-highest (<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>S</mi><mn>3</mn></msub></math>) state exhibits a dispersive band along the interstitial space within the paired diamond lattice. Upon partial hole doping of the <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>S</mi><mn>1</mn></msub></math> band with a density larger than 0.3 holes per unit cell, we predict the emergence of ferromagnetism by satisfying the Stoner criterion, enabled by a high density of states at the Fermi level. Interestingly, the spin polarization of the <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>S</mi><mn>1</mn></msub></math> band induces the nearly equal spin splitting of the <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>S</mi><mn>2</mn></msub></math> and <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub><mi>S</mi><mn>3</mn></msub></math> bands via the facilitated exchange interactions with the presence of interstitial anionic excess electrons. Our findings offer theoretical insights into an intricate flatband ferromagnetism in the experimentally synthesized 1D electride <math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><msub><mi mathvariant=\"normal\">Y</mi><mn>2</mn></msub><msub><mi>Cl</mi><mn>3</mn></msub></mrow></math> by hole doping, thereby enriching the family of 1D electride materials for spintronic applications.","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevb.110.024413","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

Mielke and Tasaki's theoretical proposal of flatband ferromagnetism with the Hubbard model has attracted much attention due to the promising possibility of ferromagnetic order in electronic materials. Using first-principles density-functional theory calculations and tight-binding analysis, we present hole-doping-induced flatband ferromagnetism in the van der Waals layered insulating electride material Y2Cl3, whose structural framework consists of an array of weakly coupled one-dimensional (1D) Y wires. It is revealed that Y2Cl3, featuring a 1D paired, puckered diamond lattice of Y atoms, possesses three occupied valence states: the first- and second-highest (S1 and S2) states give rise to flatbands due to the destructive interference of Bloch wavefunctions, whereas the third-highest (S3) state exhibits a dispersive band along the interstitial space within the paired diamond lattice. Upon partial hole doping of the S1 band with a density larger than 0.3 holes per unit cell, we predict the emergence of ferromagnetism by satisfying the Stoner criterion, enabled by a high density of states at the Fermi level. Interestingly, the spin polarization of the S1 band induces the nearly equal spin splitting of the S2 and S3 bands via the facilitated exchange interactions with the presence of interstitial anionic excess electrons. Our findings offer theoretical insights into an intricate flatband ferromagnetism in the experimentally synthesized 1D electride Y2Cl3 by hole doping, thereby enriching the family of 1D electride materials for spintronic applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
空穴掺杂诱导的准一维电化物 Y2Cl3 中的平带铁磁性
Mielke 和 Tasaki 利用哈伯德模型提出的平带铁磁理论引起了人们的广泛关注,因为在电子材料中存在着铁磁秩序的可能性。我们利用第一原理密度泛函理论计算和紧密束缚分析,提出了范德华层状绝缘电化物材料 Y2Cl3 中的空穴掺杂诱导平带铁磁性,其结构框架由弱耦合一维(1D)Y 线阵列组成。研究发现,Y2Cl3 具有由 Y 原子构成的一维成对褶皱金刚石晶格,具有三个占据的价态:第一和第二高阶(S1 和 S2)态由于布洛赫波函数的破坏性干扰而产生平带,而第三高阶(S3)态则沿着成对金刚石晶格内的间隙空间显示出色散带。当 S1 带的部分空穴掺杂密度大于每单位晶胞 0.3 个空穴时,我们预测费米级的高密度状态将满足斯通纳准则,从而出现铁磁性。有趣的是,由于间隙阴离子过剩电子的存在,S1 带的自旋极化通过促进交换相互作用诱导了 S2 和 S3 带近乎相等的自旋分裂。我们的发现从理论上揭示了通过空穴掺杂实验合成的一维电化物 Y2Cl3 中错综复杂的平带铁磁性,从而丰富了用于自旋电子应用的一维电化物材料家族。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physical Review B
Physical Review B 物理-物理:凝聚态物理
CiteScore
6.70
自引率
32.40%
发文量
0
审稿时长
3.0 months
期刊介绍: Physical Review B (PRB) is the world’s largest dedicated physics journal, publishing approximately 100 new, high-quality papers each week. The most highly cited journal in condensed matter physics, PRB provides outstanding depth and breadth of coverage, combined with unrivaled context and background for ongoing research by scientists worldwide. PRB covers the full range of condensed matter, materials physics, and related subfields, including: -Structure and phase transitions -Ferroelectrics and multiferroics -Disordered systems and alloys -Magnetism -Superconductivity -Electronic structure, photonics, and metamaterials -Semiconductors and mesoscopic systems -Surfaces, nanoscience, and two-dimensional materials -Topological states of matter
期刊最新文献
Phase transitions and composite order in U(1)N lattice London models Electronic structure and conductivity in functionalized multilayer black phosphorene First-principles calculations of the structural and electronic properties of monolayer 1T−MoO2 and WO2 Predicted multiple Walker breakdowns for current-driven domain wall motion in antiferromagnets Elastic plate basis for the deformation and electron diffraction of twisted bilayer graphene on a substrate
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1