首页 > 最新文献

Physical Review B最新文献

英文 中文
Altermagnetism and superconductivity in a multiorbital𝑡−𝐽model 多轨道𝑡-𝐽模型中的超磁性和超导性
IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2024-11-08 DOI: 10.1103/physrevb.110.205120
Anjishnu Bose, Samuel Vadnais, Arun Paramekanti
Motivated by exploring correlated multiorbital altermagnets (<mjx-container ctxtmenu_counter="145" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math data-semantic-annotation="clearspeak:unit" data-semantic-children="0,1,2" data-semantic-content="3,4" data-semantic- data-semantic-owns="0 3 1 4 2" data-semantic-role="implicit" data-semantic-speech="upper A script l megaseconds" data-semantic-structure="(5 0 3 1 4 2)" data-semantic-type="infixop"><mjx-mtext data-semantic-annotation="general:text;clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="5" data-semantic-role="latinletter" data-semantic-type="identifier" style='font-family: MJX-STX-ZERO, "Helvetica Neue", Helvetica, Roboto, Arial, sans-serif;'><mjx-utext style="font-size: 90.6%; padding: 0.828em 0px 0.221em; width: 9px;" variant="-explicitFont">A</mjx-utext></mjx-mtext><mjx-mo data-semantic-added="true" data-semantic- data-semantic-operator="infixop,⁢" data-semantic-parent="5" data-semantic-role="multiplication" data-semantic-type="operator"><mjx-c>⁢</mjx-c></mjx-mo><mjx-mi data-semantic-annotation="clearspeak:simple" data-semantic-font="script" data-semantic- data-semantic-parent="5" data-semantic-role="latinletter" data-semantic-type="identifier"><mjx-c>ℓ</mjx-c></mjx-mi><mjx-mo data-semantic-added="true" data-semantic- data-semantic-operator="infixop,⁢" data-semantic-parent="5" data-semantic-role="multiplication" data-semantic-type="operator"><mjx-c>⁢</mjx-c></mjx-mo><mjx-mtext data-semantic-annotation="clearspeak:unit" data-semantic-font="normal" data-semantic- data-semantic-parent="5" data-semantic-role="unit" data-semantic-type="identifier" style='font-family: MJX-STX-ZERO, "Helvetica Neue", Helvetica, Roboto, Arial, sans-serif;'><mjx-utext style="font-size: 90.6%; padding: 0.828em 0px 0.221em; width: 17px;" variant="-explicitFont">Ms</mjx-utext></mjx-mtext></mjx-math></mjx-container>) we study minimal <mjx-container ctxtmenu_counter="146" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math breakable="true" data-semantic-children="0,2" data-semantic-content="1" data-semantic- data-semantic-owns="0 1 2" data-semantic-role="subtraction" data-semantic-speech="t minus upper J" data-semantic-structure="(3 0 1 2)" data-semantic-type="infixop"><mjx-mi data-semantic-annotation="clearspeak:simple" data-semantic-font="italic" data-semantic- data-semantic-parent="3" data-semantic-role="latinletter" data-semantic-type="identifier"><mjx-c>𝑡</mjx-c></mjx-mi><mjx-break size="3"></mjx-break><mjx-mo data-semantic- data-semantic-operator="infixop,−" data-semantic-parent="3" data-semantic-role="subtraction" data-semantic-type="operator"><mjx-c>−</mjx-c></mjx-mo><mjx-mi data-semantic-annotation="clearspeak:simple" data-semantic-font="italic" data-semantic- data-semantic-parent="3" data-semantic-role="latinlet
受探索相关多轨道反铁磁体(AℓMs)的启发,我们研究了方八边形晶格上的最小 𝑡-𝐽 模型,该晶格有利于这种共线磁序。反铁磁阶打破了平移对称性和时间反转对称性,而 AℓM 态(等同于 "𝑑 波铁磁体")则具有多极阶,它分别打破了时间反转对称性和晶体旋转对称性,但保留了它们的乘积,从而产生了净磁化为零的自旋分裂带。我们研究了这些多轨道模型在改变掺杂和相互作用时的均场相图,发现了两种类型的 AℓM 秩:(i) 由准一维范霍夫奇点驱动的巡回弱耦合 AℓM 金属,以及 (ii) 半填充时的强 AℓM 秩。我们还发现了包括均匀𝑠波和𝑑𝑥𝑦波配对态、萌芽𝑑𝑥𝑦波对密度波阶,以及单三子配对和AℓM阶共存的均匀相在内的超导态。我们的非均相均场理论方法揭示了共存相对于相分离是不稳定的,但长程相互作用可导致条纹阶。我们的研究结果可能与 AℓM 材料的掺杂和压力研究有关。
{"title":"Altermagnetism and superconductivity in a multiorbital𝑡−𝐽model","authors":"Anjishnu Bose, Samuel Vadnais, Arun Paramekanti","doi":"10.1103/physrevb.110.205120","DOIUrl":"https://doi.org/10.1103/physrevb.110.205120","url":null,"abstract":"Motivated by exploring correlated multiorbital altermagnets (&lt;mjx-container ctxtmenu_counter=\"145\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"&gt;&lt;mjx-math data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"0,1,2\" data-semantic-content=\"3,4\" data-semantic- data-semantic-owns=\"0 3 1 4 2\" data-semantic-role=\"implicit\" data-semantic-speech=\"upper A script l megaseconds\" data-semantic-structure=\"(5 0 3 1 4 2)\" data-semantic-type=\"infixop\"&gt;&lt;mjx-mtext data-semantic-annotation=\"general:text;clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" style='font-family: MJX-STX-ZERO, \"Helvetica Neue\", Helvetica, Roboto, Arial, sans-serif;'&gt;&lt;mjx-utext style=\"font-size: 90.6%; padding: 0.828em 0px 0.221em; width: 9px;\" variant=\"-explicitFont\"&gt;A&lt;/mjx-utext&gt;&lt;/mjx-mtext&gt;&lt;mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"5\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"&gt;&lt;mjx-c&gt;⁢&lt;/mjx-c&gt;&lt;/mjx-mo&gt;&lt;mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"script\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c&gt;ℓ&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"5\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\"&gt;&lt;mjx-c&gt;⁢&lt;/mjx-c&gt;&lt;/mjx-mo&gt;&lt;mjx-mtext data-semantic-annotation=\"clearspeak:unit\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"unit\" data-semantic-type=\"identifier\" style='font-family: MJX-STX-ZERO, \"Helvetica Neue\", Helvetica, Roboto, Arial, sans-serif;'&gt;&lt;mjx-utext style=\"font-size: 90.6%; padding: 0.828em 0px 0.221em; width: 17px;\" variant=\"-explicitFont\"&gt;Ms&lt;/mjx-utext&gt;&lt;/mjx-mtext&gt;&lt;/mjx-math&gt;&lt;/mjx-container&gt;) we study minimal &lt;mjx-container ctxtmenu_counter=\"146\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"&gt;&lt;mjx-math breakable=\"true\" data-semantic-children=\"0,2\" data-semantic-content=\"1\" data-semantic- data-semantic-owns=\"0 1 2\" data-semantic-role=\"subtraction\" data-semantic-speech=\"t minus upper J\" data-semantic-structure=\"(3 0 1 2)\" data-semantic-type=\"infixop\"&gt;&lt;mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c&gt;𝑡&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;mjx-break size=\"3\"&gt;&lt;/mjx-break&gt;&lt;mjx-mo data-semantic- data-semantic-operator=\"infixop,−\" data-semantic-parent=\"3\" data-semantic-role=\"subtraction\" data-semantic-type=\"operator\"&gt;&lt;mjx-c&gt;−&lt;/mjx-c&gt;&lt;/mjx-mo&gt;&lt;mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"latinlet","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"11 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142597334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nonlinear ac Hall effect in two-dimensional superconductors 二维超导体中的非线性交流霍尔效应
IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2024-11-08 DOI: 10.1103/physrevb.110.205413
K. Sonowal, A. V. Parafilo, V. M. Kovalev, I. G. Savenko
We propose a nonlinear ac Hall effect in two-dimensional BCS single-band superconductors. Namely, a nonlinear ac transverse Hall current emerges in the superconductor interacting with an incident polarized light if a built-in dc supercurrent is present in the system. Applying the nonequilibrium Keldysh diagram technique, we calculate an ac Hall current density oscillating at double the electromagnetic field frequency. This current's strength is influenced by the inelastic relaxation rate, the dc supercurrent direction, and light polarization, with the ac current density being tunable via electron density. The ac Hall effect is unique to the superconducting state and is shaped by temperature, light frequency, and material characteristics.
我们提出了二维 BCS 单带超导体中的非线性交流霍尔效应。也就是说,如果系统中存在内置直流超级电流,那么在与入射偏振光相互作用的超导体中就会出现非线性交流横向霍尔电流。应用非平衡凯尔迪什图技术,我们计算出了以双倍电磁场频率振荡的交流霍尔电流密度。该电流强度受非弹性弛豫率、直流超级电流方向和光偏振的影响,交流电流密度可通过电子密度进行调整。交流霍尔效应是超导态所独有的,并受温度、光频率和材料特性的影响。
{"title":"Nonlinear ac Hall effect in two-dimensional superconductors","authors":"K. Sonowal, A. V. Parafilo, V. M. Kovalev, I. G. Savenko","doi":"10.1103/physrevb.110.205413","DOIUrl":"https://doi.org/10.1103/physrevb.110.205413","url":null,"abstract":"We propose a nonlinear ac Hall effect in two-dimensional BCS single-band superconductors. Namely, a nonlinear ac transverse Hall current emerges in the superconductor interacting with an incident polarized light if a built-in dc supercurrent is present in the system. Applying the nonequilibrium Keldysh diagram technique, we calculate an ac Hall current density oscillating at double the electromagnetic field frequency. This current's strength is influenced by the inelastic relaxation rate, the dc supercurrent direction, and light polarization, with the ac current density being tunable via electron density. The ac Hall effect is unique to the superconducting state and is shaped by temperature, light frequency, and material characteristics.","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"244 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142597332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Superconductivity and strain-enhanced phase stability of Janus tungsten chalcogenide hydride monolayers Janus钨瑀氢化物单层的超导性和应变增强型相稳定性
IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2024-11-08 DOI: 10.1103/physrevb.110.195408
Jakkapat Seeyangnok, Udomsilp Pinsook, Graeme J. Ackland
Janus transition metal-dichalcogenide materials have attracted a great deal of attention due to their remarkable physical properties arising from the two-dimensional geometry and the breakdown of the out-of-plane symmetry. Using first-principles density functional theory, we investigated the phase stability, strain-enhanced phase stability, and superconductivity of Janus WSeH and WSH. In addition, we investigated the contribution of the phonon linewidths from the phonon energy spectrum responsible for the superconductivity and the electron-phonon coupling as a function of phonon wave vectors and modes. Previous work has examined hexagonal 2H and tetragonal 1T structures, but we found that neither is a ground-state structure. The metastable 2H phase of WSeH is dynamically stable with <mjx-container ctxtmenu_counter="55" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math data-semantic-structure="(9 (2 0 1) 3 (8 4 7 6))"><mjx-mrow data-semantic-children="2,8" data-semantic-content="3" data-semantic- data-semantic-owns="2 3 8" data-semantic-role="equality" data-semantic-speech="normal upper T Subscript c Baseline almost equals 11.60 normal upper K" data-semantic-type="relseq"><mjx-msub data-semantic-children="0,1" data-semantic- data-semantic-owns="0 1" data-semantic-parent="9" data-semantic-role="latinletter" data-semantic-type="subscript"><mjx-mi data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="2" data-semantic-role="latinletter" data-semantic-type="identifier"><mjx-c>T</mjx-c></mjx-mi><mjx-script style="vertical-align: -0.15em;"><mjx-mi data-semantic-annotation="clearspeak:simple" data-semantic-font="italic" data-semantic- data-semantic-parent="2" data-semantic-role="latinletter" data-semantic-type="identifier" size="s"><mjx-c>𝑐</mjx-c></mjx-mi></mjx-script></mjx-msub><mjx-mo data-semantic- data-semantic-operator="relseq,≈" data-semantic-parent="9" data-semantic-role="equality" data-semantic-type="relation" space="4"><mjx-c>≈</mjx-c></mjx-mo><mjx-mrow data-semantic-added="true" data-semantic-annotation="clearspeak:simple;clearspeak:unit" data-semantic-children="4,6" data-semantic-content="7" data-semantic- data-semantic-owns="4 7 6" data-semantic-parent="9" data-semantic-role="implicit" data-semantic-type="infixop" space="4"><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="8" data-semantic-role="float" data-semantic-type="number"><mjx-c noic="true" style="padding-top: 0.646em;">1</mjx-c><mjx-c noic="true" style="padding-top: 0.646em;">1</mjx-c><mjx-c noic="true" style="padding-top: 0.646em;">.</mjx-c><mjx-c noic="true" style="padding-top: 0.646em;">6</mjx-c><mjx-c style="padding-top: 0.646em;">0</mjx-c></mjx-mn><mjx-mspace data-semantic- data-semantic-operator="infixop,⁢" data-semantic-parent="8" data-semantic-role="space" data-semantic-
Janus 过渡金属二掺镓材料因其二维几何形状和平面外对称性的破坏而具有显著的物理性质,因而引起了广泛的关注。我们利用第一原理密度泛函理论研究了 Janus WSeH 和 WSH 的相稳定性、应变增强相稳定性和超导性。此外,我们还研究了声子能谱中声子线宽对超导性的贡献,以及电子-声子耦合作为声子波矢量和模式函数的作用。以前的工作研究了六方 2H 和四方 1T 结构,但我们发现这两种结构都不是基态结构。WSeH 的可蜕变 2H 相动态稳定,温度𝑐≈11.60K,与 WSH 相似。压缩双轴应变--相当于压力的二维应变--可以稳定 WSeH 和 WSH 的 1T 结构,其温度分别为𝑐≈9.23K 和 10.52K。
{"title":"Superconductivity and strain-enhanced phase stability of Janus tungsten chalcogenide hydride monolayers","authors":"Jakkapat Seeyangnok, Udomsilp Pinsook, Graeme J. Ackland","doi":"10.1103/physrevb.110.195408","DOIUrl":"https://doi.org/10.1103/physrevb.110.195408","url":null,"abstract":"Janus transition metal-dichalcogenide materials have attracted a great deal of attention due to their remarkable physical properties arising from the two-dimensional geometry and the breakdown of the out-of-plane symmetry. Using first-principles density functional theory, we investigated the phase stability, strain-enhanced phase stability, and superconductivity of Janus WSeH and WSH. In addition, we investigated the contribution of the phonon linewidths from the phonon energy spectrum responsible for the superconductivity and the electron-phonon coupling as a function of phonon wave vectors and modes. Previous work has examined hexagonal 2H and tetragonal 1T structures, but we found that neither is a ground-state structure. The metastable 2H phase of WSeH is dynamically stable with &lt;mjx-container ctxtmenu_counter=\"55\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"&gt;&lt;mjx-math data-semantic-structure=\"(9 (2 0 1) 3 (8 4 7 6))\"&gt;&lt;mjx-mrow data-semantic-children=\"2,8\" data-semantic-content=\"3\" data-semantic- data-semantic-owns=\"2 3 8\" data-semantic-role=\"equality\" data-semantic-speech=\"normal upper T Subscript c Baseline almost equals 11.60 normal upper K\" data-semantic-type=\"relseq\"&gt;&lt;mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-parent=\"9\" data-semantic-role=\"latinletter\" data-semantic-type=\"subscript\"&gt;&lt;mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c&gt;T&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;mjx-script style=\"vertical-align: -0.15em;\"&gt;&lt;mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\" size=\"s\"&gt;&lt;mjx-c&gt;𝑐&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;/mjx-script&gt;&lt;/mjx-msub&gt;&lt;mjx-mo data-semantic- data-semantic-operator=\"relseq,≈\" data-semantic-parent=\"9\" data-semantic-role=\"equality\" data-semantic-type=\"relation\" space=\"4\"&gt;&lt;mjx-c&gt;≈&lt;/mjx-c&gt;&lt;/mjx-mo&gt;&lt;mjx-mrow data-semantic-added=\"true\" data-semantic-annotation=\"clearspeak:simple;clearspeak:unit\" data-semantic-children=\"4,6\" data-semantic-content=\"7\" data-semantic- data-semantic-owns=\"4 7 6\" data-semantic-parent=\"9\" data-semantic-role=\"implicit\" data-semantic-type=\"infixop\" space=\"4\"&gt;&lt;mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"8\" data-semantic-role=\"float\" data-semantic-type=\"number\"&gt;&lt;mjx-c noic=\"true\" style=\"padding-top: 0.646em;\"&gt;1&lt;/mjx-c&gt;&lt;mjx-c noic=\"true\" style=\"padding-top: 0.646em;\"&gt;1&lt;/mjx-c&gt;&lt;mjx-c noic=\"true\" style=\"padding-top: 0.646em;\"&gt;.&lt;/mjx-c&gt;&lt;mjx-c noic=\"true\" style=\"padding-top: 0.646em;\"&gt;6&lt;/mjx-c&gt;&lt;mjx-c style=\"padding-top: 0.646em;\"&gt;0&lt;/mjx-c&gt;&lt;/mjx-mn&gt;&lt;mjx-mspace data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"8\" data-semantic-role=\"space\" data-semantic-","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"16 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142597319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Two-dimensional higher-order topological metals 二维高阶拓扑金属
IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2024-11-08 DOI: 10.1103/physrevb.110.205415
Lizhou Liu, Cheng-Ming Miao, Qing-Feng Sun, Ying-Tao Zhang
We investigate the energy band structure and energy levels of graphene with staggered intrinsic spin-orbit coupling and in-plane Zeeman fields. Our study demonstrates that staggered intrinsic spin-orbit coupling induces bulk band crossover at the 𝐾 and 𝐾 valleys and generates antihelical edge states at the zigzag boundaries, resulting in topological metallic phases. Quantized transport coefficients confirm the existence of these antihelical edge states. Furthermore, an in-plane Zeeman field, regardless of orientation, opens a gap in the antihelical edge states while preserving bulk band closure, leading to higher-order topological metals with corner states. We also validate the presence of these corner states in nanoflakes with zigzag boundaries and confirm the metallic phases with crossed bands through a continuum low-energy model analysis.
我们研究了具有交错本征自旋轨道耦合和平面泽曼场的石墨烯的能带结构和能级。我们的研究表明,交错的本征自旋轨道耦合在 "锗 "和 "锗′"谷引起了体带交叉,并在之字形边界产生了反螺旋边缘态,从而形成了拓扑金属相。量子化传输系数证实了这些反螺旋边缘态的存在。此外,无论取向如何,平面内的泽曼场都会在保持体带封闭的同时打开反螺旋边缘态的缺口,从而产生具有角态的高阶拓扑金属。我们还验证了具有之字形边界的纳米片中存在这些角态,并通过连续低能模型分析确认了具有交叉带的金属相。
{"title":"Two-dimensional higher-order topological metals","authors":"Lizhou Liu, Cheng-Ming Miao, Qing-Feng Sun, Ying-Tao Zhang","doi":"10.1103/physrevb.110.205415","DOIUrl":"https://doi.org/10.1103/physrevb.110.205415","url":null,"abstract":"We investigate the energy band structure and energy levels of graphene with staggered intrinsic spin-orbit coupling and in-plane Zeeman fields. Our study demonstrates that staggered intrinsic spin-orbit coupling induces bulk band crossover at the <mjx-container ctxtmenu_counter=\"35\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"0\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"upper K\" data-semantic-type=\"identifier\"><mjx-c>𝐾</mjx-c></mjx-mi></mjx-math></mjx-container> and <mjx-container ctxtmenu_counter=\"36\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(2 0 1)\"><mjx-msup data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-role=\"latinletter\" data-semantic-speech=\"upper K prime\" data-semantic-type=\"superscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c>𝐾</mjx-c></mjx-mi><mjx-script style=\"vertical-align: 0.363em; margin-left: 0.053em;\"><mjx-mo data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"prime\" data-semantic-type=\"punctuation\" size=\"s\"><mjx-c>′</mjx-c></mjx-mo></mjx-script></mjx-msup></mjx-math></mjx-container> valleys and generates antihelical edge states at the zigzag boundaries, resulting in topological metallic phases. Quantized transport coefficients confirm the existence of these antihelical edge states. Furthermore, an in-plane Zeeman field, regardless of orientation, opens a gap in the antihelical edge states while preserving bulk band closure, leading to higher-order topological metals with corner states. We also validate the presence of these corner states in nanoflakes with zigzag boundaries and confirm the metallic phases with crossed bands through a continuum low-energy model analysis.","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"28 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142597320","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spin-deformation coupling in two-dimensional polar materials 二维极性材料中的自旋-形变耦合
IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2024-11-08 DOI: 10.1103/physrevb.110.205412
J. A. Sánchez-Monroy, Carlos Mera Acosta
The control of the spin degree of freedom is at the heart of spintronics, which can potentially be achieved by spin-orbit coupling or band topological effects. In this paper, we explore another potential controlled mechanism under debate: the spin-deformation coupling (SDC)—the coupling between intrinsic or extrinsic geometrical deformations and the spin degree of freedom. We focus on polar-deformed thin films or two-dimensional compounds, where the Rashba spin-orbit coupling (SOC) is considered as an <mjx-container ctxtmenu_counter="10" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math data-semantic-structure="(6 0 5 (4 1 2 3))"><mjx-mrow data-semantic-annotation="clearspeak:simple" data-semantic-children="0,4" data-semantic-content="5,0" data-semantic- data-semantic-owns="0 5 4" data-semantic-role="prefix function" data-semantic-speech="SU left parenthesis 2 right parenthesis" data-semantic-type="appl"><mjx-mtext data-semantic-font="normal" data-semantic- data-semantic-operator="appl" data-semantic-parent="6" data-semantic-role="prefix function" data-semantic-type="function" style='font-family: MJX-STX-ZERO, "Helvetica Neue", Helvetica, Roboto, Arial, sans-serif;'><mjx-utext style="font-size: 90.6%; padding: 0.828em 0px 0.221em; width: 18px;" variant="-explicitFont">SU</mjx-utext></mjx-mtext><mjx-mo data-semantic-added="true" data-semantic- data-semantic-operator="appl" data-semantic-parent="6" data-semantic-role="application" data-semantic-type="punctuation"><mjx-c>⁡</mjx-c></mjx-mo><mjx-mrow data-semantic-added="true" data-semantic-children="2" data-semantic-content="1,3" data-semantic- data-semantic-owns="1 2 3" data-semantic-parent="6" data-semantic-role="leftright" data-semantic-type="fenced" space="2"><mjx-mo data-semantic- data-semantic-operator="fenced" data-semantic-parent="4" data-semantic-role="open" data-semantic-type="fence" style="vertical-align: -0.02em;"><mjx-c>(</mjx-c></mjx-mo><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="4" data-semantic-role="integer" data-semantic-type="number"><mjx-c>2</mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-operator="fenced" data-semantic-parent="4" data-semantic-role="close" data-semantic-type="fence" style="vertical-align: -0.02em;"><mjx-c>)</mjx-c></mjx-mo></mjx-mrow></mjx-mrow></mjx-math></mjx-container> non-Abelian gauge field. We demonstrate that the dynamics between surface and normal electronic degrees of freedom can be properly decoupled using the thin-layer approach by performing a suitable gauge transformation, as introduced in the context of many-body correlated systems. Our work leads to three significant results: (i) gauge invariance implies that the spin is uncoupled from the surface's extrinsic geometry, challenging the common consensus; (ii) the Rashba SOC on a curved surface can be included as an <mjx-container ctxtmenu_c
自旋自由度的控制是自旋电子学的核心,可以通过自旋轨道耦合或带拓扑效应来实现。在本文中,我们将探讨另一种正在讨论的潜在控制机制:自旋形变耦合(SDC)--内在或外在几何形变与自旋自由度之间的耦合。我们的研究重点是极性变形薄膜或二维化合物,其中拉什巴自旋轨道耦合(SOC)被视为苏(2)非阿贝尔量规场。我们证明,表面和法向电子自由度之间的动力学可以利用薄层方法,通过进行适当的量规变换来适当地解耦,正如在多体相关系统中引入的那样。我们的工作带来了三个重要结果:(i) 度量不变性意味着自旋与表面的外在几何是不耦合的,这是对普遍共识的挑战;(ii) 曲面上的拉什巴 SOC 可以作为曲线坐标中的 SU(2) 非阿贝尔量规场;(iii) 我们发现了一个以前未曾注意到的依赖于拉什巴 SOC 强度的标量几何势。这种独立于自旋的标量势代表了非阿贝尔规规场的法向分量解耦后的剩余效应。我们论文的成果为探索通过使用 SDC 操纵自旋自由度开辟了另一条途径。
{"title":"Spin-deformation coupling in two-dimensional polar materials","authors":"J. A. Sánchez-Monroy, Carlos Mera Acosta","doi":"10.1103/physrevb.110.205412","DOIUrl":"https://doi.org/10.1103/physrevb.110.205412","url":null,"abstract":"The control of the spin degree of freedom is at the heart of spintronics, which can potentially be achieved by spin-orbit coupling or band topological effects. In this paper, we explore another potential controlled mechanism under debate: the spin-deformation coupling (SDC)—the coupling between intrinsic or extrinsic geometrical deformations and the spin degree of freedom. We focus on polar-deformed thin films or two-dimensional compounds, where the Rashba spin-orbit coupling (SOC) is considered as an &lt;mjx-container ctxtmenu_counter=\"10\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"&gt;&lt;mjx-math data-semantic-structure=\"(6 0 5 (4 1 2 3))\"&gt;&lt;mjx-mrow data-semantic-annotation=\"clearspeak:simple\" data-semantic-children=\"0,4\" data-semantic-content=\"5,0\" data-semantic- data-semantic-owns=\"0 5 4\" data-semantic-role=\"prefix function\" data-semantic-speech=\"SU left parenthesis 2 right parenthesis\" data-semantic-type=\"appl\"&gt;&lt;mjx-mtext data-semantic-font=\"normal\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"6\" data-semantic-role=\"prefix function\" data-semantic-type=\"function\" style='font-family: MJX-STX-ZERO, \"Helvetica Neue\", Helvetica, Roboto, Arial, sans-serif;'&gt;&lt;mjx-utext style=\"font-size: 90.6%; padding: 0.828em 0px 0.221em; width: 18px;\" variant=\"-explicitFont\"&gt;SU&lt;/mjx-utext&gt;&lt;/mjx-mtext&gt;&lt;mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"6\" data-semantic-role=\"application\" data-semantic-type=\"punctuation\"&gt;&lt;mjx-c&gt;⁡&lt;/mjx-c&gt;&lt;/mjx-mo&gt;&lt;mjx-mrow data-semantic-added=\"true\" data-semantic-children=\"2\" data-semantic-content=\"1,3\" data-semantic- data-semantic-owns=\"1 2 3\" data-semantic-parent=\"6\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\" space=\"2\"&gt;&lt;mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"4\" data-semantic-role=\"open\" data-semantic-type=\"fence\" style=\"vertical-align: -0.02em;\"&gt;&lt;mjx-c&gt;(&lt;/mjx-c&gt;&lt;/mjx-mo&gt;&lt;mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"integer\" data-semantic-type=\"number\"&gt;&lt;mjx-c&gt;2&lt;/mjx-c&gt;&lt;/mjx-mn&gt;&lt;mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"4\" data-semantic-role=\"close\" data-semantic-type=\"fence\" style=\"vertical-align: -0.02em;\"&gt;&lt;mjx-c&gt;)&lt;/mjx-c&gt;&lt;/mjx-mo&gt;&lt;/mjx-mrow&gt;&lt;/mjx-mrow&gt;&lt;/mjx-math&gt;&lt;/mjx-container&gt; non-Abelian gauge field. We demonstrate that the dynamics between surface and normal electronic degrees of freedom can be properly decoupled using the thin-layer approach by performing a suitable gauge transformation, as introduced in the context of many-body correlated systems. Our work leads to three significant results: (i) gauge invariance implies that the spin is uncoupled from the surface's extrinsic geometry, challenging the common consensus; (ii) the Rashba SOC on a curved surface can be included as an &lt;mjx-container ctxtmenu_c","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"70 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142597318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tuning terahertz magnons in a mixed van der Waals antiferromagnet 在混合范德华反铁磁体中调谐太赫兹磁子
IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2024-11-08 DOI: 10.1103/physrevb.110.174414
F. Le Mardelé, I. Mohelsky, D. Jana, A. Pawbake, J. Dzian, W.-L. Lee, K. Raju, R. Sankar, C. Faugeras, M. Potemski, M. E. Zhitomirsky, M. Orlita
Alloying stands out as a pivotal technological method employed across various compounds, be they metallic, magnetic, or semiconducting, serving to fine-tune their properties to meet specific requirements. Ternary semiconductors represent a prominent example of such alloys. They offer fine-tuning of electronic bands, the band gap in particular, thus granting the technology of semiconductor heterostructures devices, key elements in current electronics and optoelectronics. In the realm of magnetically ordered systems, akin to electronic bands in solids, spin waves exhibit characteristic dispersion relations, featuring sizable magnon gaps in many antiferromagnets. The engineering of the magnon gap constitutes a relevant direction in current research on antiferromagnets, aiming to leverage their distinct properties for terahertz technologies, spintronics, or magnonics. In this study, we showcase the tunability of the magnon gap across the terahertz spectral range within an alloy comprising representative semiconducting van der Waals antiferromagnets <mjx-container ctxtmenu_counter="10" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math data-semantic-structure="(2 0 1)"><mjx-msub data-semantic-children="0,1" data-semantic- data-semantic-owns="0 1" data-semantic-role="unknown" data-semantic-speech="upper F e upper P upper S 3" data-semantic-type="subscript"><mjx-mi data-semantic-font="normal" data-semantic- data-semantic-parent="2" data-semantic-role="unknown" data-semantic-type="identifier"><mjx-c noic="true" style="padding-top: 0.669em;">F</mjx-c><mjx-c noic="true" style="padding-top: 0.669em;">e</mjx-c><mjx-c noic="true" style="padding-top: 0.669em;">P</mjx-c><mjx-c style="padding-top: 0.669em;">S</mjx-c></mjx-mi><mjx-script style="vertical-align: -0.15em;"><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="2" data-semantic-role="integer" data-semantic-type="number" size="s"><mjx-c>3</mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-math></mjx-container> and <mjx-container ctxtmenu_counter="11" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math data-semantic-structure="(2 0 1)"><mjx-msub data-semantic-children="0,1" data-semantic- data-semantic-owns="0 1" data-semantic-role="unknown" data-semantic-speech="upper N i upper P upper S 3" data-semantic-type="subscript"><mjx-mi data-semantic-font="normal" data-semantic- data-semantic-parent="2" data-semantic-role="unknown" data-semantic-type="identifier"><mjx-c noic="true" style="padding-top: 0.673em;">N</mjx-c><mjx-c noic="true" style="padding-top: 0.673em;">i</mjx-c><mjx-c noic="true" style="padding-top: 0.673em;">P</mjx-c><mjx-c style="padding-top: 0.673em;">S</mjx-c></mjx-mi><mjx-script style="vertical-align: -0.15em;"><mjx-mn data-semantic-annotation="clearspeak:simple" data-s
合金作为一种关键的技术方法,被广泛应用于各种化合物(无论是金属、磁性还是半导体)中,用于微调其特性以满足特定要求。三元半导体就是此类合金的一个突出例子。它们可以对电子带,尤其是带隙进行微调,从而推动了半导体异质结构器件技术的发展,而这正是当前电子学和光电子学的关键要素。在磁有序系统领域,类似于固体中的电子带,自旋波表现出特有的色散关系,在许多反铁磁体中具有相当大的磁子间隙。磁子间隙工程学是当前反铁磁体研究的一个相关方向,目的是利用其独特的特性来实现太赫兹技术、自旋电子学或磁电子学。在本研究中,我们展示了在由代表性半导体范德华反铁磁体 FePS3 和 NiPS3 组成的合金中,磁子间隙在太赫兹光谱范围内的可调谐性。这些成分具有相同的面内晶体结构、磁单元和磁各向异性方向,但后者的振幅和符号有所不同。这些特性共同导致了 Fe1-𝑥Ni𝑥PS3 合金中磁子间隙的广泛可调性,在这种合金中,磁序是由铁的较强垂直各向异性强加的。
{"title":"Tuning terahertz magnons in a mixed van der Waals antiferromagnet","authors":"F. Le Mardelé, I. Mohelsky, D. Jana, A. Pawbake, J. Dzian, W.-L. Lee, K. Raju, R. Sankar, C. Faugeras, M. Potemski, M. E. Zhitomirsky, M. Orlita","doi":"10.1103/physrevb.110.174414","DOIUrl":"https://doi.org/10.1103/physrevb.110.174414","url":null,"abstract":"Alloying stands out as a pivotal technological method employed across various compounds, be they metallic, magnetic, or semiconducting, serving to fine-tune their properties to meet specific requirements. Ternary semiconductors represent a prominent example of such alloys. They offer fine-tuning of electronic bands, the band gap in particular, thus granting the technology of semiconductor heterostructures devices, key elements in current electronics and optoelectronics. In the realm of magnetically ordered systems, akin to electronic bands in solids, spin waves exhibit characteristic dispersion relations, featuring sizable magnon gaps in many antiferromagnets. The engineering of the magnon gap constitutes a relevant direction in current research on antiferromagnets, aiming to leverage their distinct properties for terahertz technologies, spintronics, or magnonics. In this study, we showcase the tunability of the magnon gap across the terahertz spectral range within an alloy comprising representative semiconducting van der Waals antiferromagnets &lt;mjx-container ctxtmenu_counter=\"10\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"&gt;&lt;mjx-math data-semantic-structure=\"(2 0 1)\"&gt;&lt;mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-role=\"unknown\" data-semantic-speech=\"upper F e upper P upper S 3\" data-semantic-type=\"subscript\"&gt;&lt;mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c noic=\"true\" style=\"padding-top: 0.669em;\"&gt;F&lt;/mjx-c&gt;&lt;mjx-c noic=\"true\" style=\"padding-top: 0.669em;\"&gt;e&lt;/mjx-c&gt;&lt;mjx-c noic=\"true\" style=\"padding-top: 0.669em;\"&gt;P&lt;/mjx-c&gt;&lt;mjx-c style=\"padding-top: 0.669em;\"&gt;S&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;mjx-script style=\"vertical-align: -0.15em;\"&gt;&lt;mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"&gt;&lt;mjx-c&gt;3&lt;/mjx-c&gt;&lt;/mjx-mn&gt;&lt;/mjx-script&gt;&lt;/mjx-msub&gt;&lt;/mjx-math&gt;&lt;/mjx-container&gt; and &lt;mjx-container ctxtmenu_counter=\"11\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"&gt;&lt;mjx-math data-semantic-structure=\"(2 0 1)\"&gt;&lt;mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-role=\"unknown\" data-semantic-speech=\"upper N i upper P upper S 3\" data-semantic-type=\"subscript\"&gt;&lt;mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c noic=\"true\" style=\"padding-top: 0.673em;\"&gt;N&lt;/mjx-c&gt;&lt;mjx-c noic=\"true\" style=\"padding-top: 0.673em;\"&gt;i&lt;/mjx-c&gt;&lt;mjx-c noic=\"true\" style=\"padding-top: 0.673em;\"&gt;P&lt;/mjx-c&gt;&lt;mjx-c style=\"padding-top: 0.673em;\"&gt;S&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;mjx-script style=\"vertical-align: -0.15em;\"&gt;&lt;mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-s","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"8 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142597323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Topology of Weyl semimetal interfaces uncovered by reflection shift 通过反射偏移揭示韦尔半金属界面拓扑结构
IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2024-11-08 DOI: 10.1103/physrevb.110.195302
Mou Yang, Qiao He
The reflection point is different from the incident point on the interface between two Weyl semimetals, and a spatial shift happens during the reflection. The reflection shift vector as a function of in-plane wave vector shows vortex structures in the incident pocket (the projection of the isoenergy surface on the junction interface) and on the pocket edge. We propose a topological quantity, which is defined by the contour integration of reflection shift along the pocket edge and is proven to be the number of edge vortices as well as that of the interface Fermi arcs connected to the pocket. Every vortex is an interface particle loaded with unit topological charge and the distribution of these topological particles reflects the internal structure of the incident pocket under the influence of the transmitted medium.
在两个韦尔半金属的界面上,反射点与入射点不同,反射过程中会发生空间位移。作为面内波矢量函数的反射位移矢量显示了入射口袋(等能面在交界界面上的投影)和口袋边缘的涡旋结构。我们提出了一个拓扑量,它由口袋边缘反射位移的等值线积分来定义,并被证明是边缘漩涡的数量以及与口袋相连的界面费米弧的数量。每个漩涡都是带有单位拓扑电荷的界面粒子,这些拓扑粒子的分布反映了入射口袋在传输介质影响下的内部结构。
{"title":"Topology of Weyl semimetal interfaces uncovered by reflection shift","authors":"Mou Yang, Qiao He","doi":"10.1103/physrevb.110.195302","DOIUrl":"https://doi.org/10.1103/physrevb.110.195302","url":null,"abstract":"The reflection point is different from the incident point on the interface between two Weyl semimetals, and a spatial shift happens during the reflection. The reflection shift vector as a function of in-plane wave vector shows vortex structures in the incident pocket (the projection of the isoenergy surface on the junction interface) and on the pocket edge. We propose a topological quantity, which is defined by the contour integration of reflection shift along the pocket edge and is proven to be the number of edge vortices as well as that of the interface Fermi arcs connected to the pocket. Every vortex is an interface particle loaded with unit topological charge and the distribution of these topological particles reflects the internal structure of the incident pocket under the influence of the transmitted medium.","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"14 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142597328","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fully tunable Fano resonances in chiral electronic transport 手性电子传输中完全可调的法诺共振
IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2024-11-08 DOI: 10.1103/physrevb.110.195407
Ai-Ying Ye, Zhao Yang Zeng
Fano resonance is believed to arise when a direct path interferes with a resonant path. We demonstrate that this is not true for chiral electronic transmission without additional direct paths. To address the Fano effect in chiral electronic transport, we suggest an electronic Mach-Zehnder-Fano interferometer, which integrates a quantum dot into an electronic Mach-Zehnder interferometer. Due to the absence of backscattering in chiral electronic transport, Fano resonances can be fully adjusted by an external magnetic flux in the transmission, linear conductance, differential conductance, and differential shot noise of chiral electrons. Even the current and shot noise for a symmetric interferometer with two arms of the same length exhibit fully controllable resonances and distinct Fano characteristics. In particular, all the profiles in the various transport spectra follow the same evolution pattern in an evolution cycle that is resistant to changes in the device's defining parameters.
法诺共振被认为是在直接路径干扰共振路径时产生的。我们证明,在没有额外直接路径的情况下,手性电子传输并非如此。为了解决手性电子传输中的法诺效应,我们提出了一种电子马赫-泽恩德-法诺干涉仪,它将量子点集成到电子马赫-泽恩德干涉仪中。由于手性电子传输中不存在反向散射,手性电子的传输、线性电导、差分电导和差分射出噪声中的法诺共振可完全由外部磁通量调节。即使是两臂长度相同的对称干涉仪,其电流和射出噪声也表现出完全可控的共振和明显的法诺特征。特别是,各种传输谱的所有轮廓都遵循相同的演化模式,其演化周期不受器件定义参数变化的影响。
{"title":"Fully tunable Fano resonances in chiral electronic transport","authors":"Ai-Ying Ye, Zhao Yang Zeng","doi":"10.1103/physrevb.110.195407","DOIUrl":"https://doi.org/10.1103/physrevb.110.195407","url":null,"abstract":"Fano resonance is believed to arise when a direct path interferes with a resonant path. We demonstrate that this is not true for chiral electronic transmission without additional direct paths. To address the Fano effect in chiral electronic transport, we suggest an electronic Mach-Zehnder-Fano interferometer, which integrates a quantum dot into an electronic Mach-Zehnder interferometer. Due to the absence of backscattering in chiral electronic transport, Fano resonances can be fully adjusted by an external magnetic flux in the transmission, linear conductance, differential conductance, and differential shot noise of chiral electrons. Even the current and shot noise for a symmetric interferometer with two arms of the same length exhibit fully controllable resonances and distinct Fano characteristics. In particular, all the profiles in the various transport spectra follow the same evolution pattern in an evolution cycle that is resistant to changes in the device's defining parameters.","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"35 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142597329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Persistent nodal magnon-photon polariton in ferromagnetic heterostructures 铁磁异质结构中的持久结点磁子-光子极化子
IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2024-11-08 DOI: 10.1103/physrevb.110.184403
Zhuolun Qiu, Xi-Han Zhou, Hanchen Wang, Guang Yang, Tao Yu
Exceptional points with coalescence of eigenvalues and eigenvectors are spectral singularities in the parameter space, achieving which often needs fine-tuning of parameters in quantum systems. We predict a persistent realization of nodal magnon-photon polariton, i.e., a polariton of long wavelength without any gap splitting in a thin ferromagnetic insulator film sandwiched by two normal metals, which persistently exists when the ferromagnet is sufficiently thick 100 nm due to the joint effect of dissipation and dissipative coupling. We perform the model calculation beyond the perturbation theory using a classical approach, develop a quantum scheme able to account for the Ohmic dissipation, and find ultrastrong coupling with coupling strength comparable to the bare magnon frequency. Via revealing a simple conversion relation, we extend this formalism to superconductors and predict the gap opened by the ultrastrong coupling strongly depends on the direction of polariton propagation. Our findings may help search for robust non-Hermitian topological phases in magnonic and spintronic devices.
特征值和特征向量凝聚的异常点是参数空间中的光谱奇异点,要实现这些奇异点往往需要对量子系统中的参数进行微调。由于耗散和耗散耦合的共同作用,当铁磁体足够厚 ∼ 100 nm 时,这种现象会持续存在。我们使用经典方法进行了超越扰动理论的模型计算,开发了一种能够解释欧姆耗散的量子方案,并发现了耦合强度与裸磁子频率相当的超强耦合。通过揭示一个简单的转换关系,我们将这一形式主义扩展到了超导体,并预测超强耦合打开的间隙在很大程度上取决于极化子的传播方向。我们的发现可能有助于在磁子和自旋电子器件中寻找稳健的非赫米提拓扑相。
{"title":"Persistent nodal magnon-photon polariton in ferromagnetic heterostructures","authors":"Zhuolun Qiu, Xi-Han Zhou, Hanchen Wang, Guang Yang, Tao Yu","doi":"10.1103/physrevb.110.184403","DOIUrl":"https://doi.org/10.1103/physrevb.110.184403","url":null,"abstract":"Exceptional points with coalescence of eigenvalues and eigenvectors are spectral singularities in the parameter space, achieving which often needs fine-tuning of parameters in quantum systems. We predict a <i>persistent</i> realization of nodal magnon-photon polariton, i.e., a polariton of long wavelength without any gap splitting in a thin ferromagnetic insulator film sandwiched by two normal metals, which persistently exists when the ferromagnet is sufficiently thick <mjx-container ctxtmenu_counter=\"32\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"><mjx-math data-semantic-structure=\"(3 2 0 1)\"><mjx-mrow data-semantic-children=\"2,1\" data-semantic-content=\"0\" data-semantic- data-semantic-owns=\"2 0 1\" data-semantic-role=\"equality\" data-semantic-speech=\"tilde 100\" data-semantic-type=\"relseq\"><mjx-mrow data-semantic-added=\"true\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"unknown\" data-semantic-type=\"empty\"></mjx-mrow><mjx-mo data-semantic- data-semantic-operator=\"relseq,∼\" data-semantic-parent=\"3\" data-semantic-role=\"equality\" data-semantic-type=\"relation\"><mjx-c>∼</mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"integer\" data-semantic-type=\"number\" space=\"4\"><mjx-c noic=\"true\" style=\"padding-top: 0.642em;\">1</mjx-c><mjx-c noic=\"true\" style=\"padding-top: 0.642em;\">0</mjx-c><mjx-c style=\"padding-top: 0.642em;\">0</mjx-c></mjx-mn></mjx-mrow></mjx-math></mjx-container> nm due to the joint effect of dissipation and dissipative coupling. We perform the model calculation <i>beyond the perturbation theory</i> using a classical approach, develop a quantum scheme able to account for the Ohmic dissipation, and find ultrastrong coupling with coupling strength comparable to the bare magnon frequency. Via revealing a simple conversion relation, we extend this formalism to superconductors and predict the gap opened by the ultrastrong coupling strongly depends on the direction of polariton propagation. Our findings may help search for robust non-Hermitian topological phases in magnonic and spintronic devices.","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"6 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142597325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sliding- and twist-tunable valley polarization in bilayerNiI2 双层碘化镍中的滑动和扭曲可调谷极化
IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy Pub Date : 2024-11-08 DOI: 10.1103/physrevb.110.205119
Linze Li, Xu Li, Liyan Lin, Dehe Zhang, Mingxing Chen, Di Wu, Yurong Yang
Valley, as an emerging degree of freedom of electron, has attracted extensive attention on account of its huge potential in electronic component technology. Two-dimensional (2D) materials provide an ideal platform for the research of valleytronics. Here, we study the sliding and twist effects on valley of bilayer <mjx-container ctxtmenu_counter="74" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math data-semantic-structure="(2 0 1)"><mjx-msub data-semantic-children="0,1" data-semantic- data-semantic-owns="0 1" data-semantic-role="unknown" data-semantic-speech="upper N i upper I 2" data-semantic-type="subscript"><mjx-mrow><mjx-mi data-semantic-font="normal" data-semantic- data-semantic-parent="2" data-semantic-role="unknown" data-semantic-type="identifier"><mjx-c noic="true" style="padding-top: 0.673em;">N</mjx-c><mjx-c noic="true" style="padding-top: 0.673em;">i</mjx-c><mjx-c style="padding-top: 0.673em;">I</mjx-c></mjx-mi></mjx-mrow><mjx-script style="vertical-align: -0.15em;"><mjx-mn data-semantic-annotation="clearspeak:simple" data-semantic-font="normal" data-semantic- data-semantic-parent="2" data-semantic-role="integer" data-semantic-type="number" size="s"><mjx-c>2</mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-math></mjx-container> by the first-principles calculations. For a monolayer, spatial inversion symmetry maintains the degeneracy of two valleys. In the AA stacking bilayer, which can be obtained by a vertical translation operation on a monolayer structure, the valley band splitting is absent due to the <mjx-container ctxtmenu_counter="75" ctxtmenu_oldtabindex="1" jax="CHTML" overflow="linebreak" role="tree" sre-explorer- style="font-size: 100.7%;" tabindex="0"><mjx-math data-semantic-structure="(7 (2 0 1) 6 (5 3 4))"><mjx-mrow data-semantic-annotation="clearspeak:unit" data-semantic-children="2,5" data-semantic-content="6" data-semantic- data-semantic-owns="2 6 5" data-semantic-role="implicit" data-semantic-speech="ModifyingAbove upper P With ̂ ModifyingAbove upper T With ̂" data-semantic-type="infixop"><mjx-mover data-semantic-children="0,1" data-semantic- data-semantic-owns="0 1" data-semantic-parent="7" data-semantic-role="latinletter" data-semantic-type="overscore"><mjx-over style="padding-bottom: 0.102em; padding-left: 0.379em; margin-bottom: -0.536em;"><mjx-mo data-semantic-annotation="accent:unknown" data-semantic- data-semantic-parent="2" data-semantic-role="overaccent" data-semantic-type="operator" style="width: 0px; margin-left: -0.286em;"><mjx-c>ˆ</mjx-c></mjx-mo></mjx-over><mjx-base><mjx-mi data-semantic-annotation="clearspeak:simple" data-semantic-font="italic" data-semantic- data-semantic-parent="2" data-semantic-role="latinletter" data-semantic-type="identifier"><mjx-c>𝑃</mjx-c></mjx-mi></mjx-base></mjx-mover><mjx-mo data-semantic-added="true" data-semantic- data-semantic-operator="infixop,⁢" data-semantic-parent="7" data-semantic-role="m
谷电作为一种新兴的电子自由度,因其在电子元件技术中的巨大潜力而受到广泛关注。二维(2D)材料为谷电研究提供了一个理想的平台。在此,我们通过第一性原理计算研究了双层 NiI2 的滑动和扭曲效应。对于单层来说,空间反转对称性维持了两个谷的退变性。在单层结构上通过垂直平移操作可以得到的 AA 堆积双层中,由于ˆ𝑃ˆ𝑇联合对称性,谷带分裂不存在。AA 堆积双分子层的层间滑动不能破坏ˆ𝑃ˆ𝑇联合对称性,因此在滑动体系中不会出现 AA 堆积的谷带分裂。对于 AA′堆积双分子层,谷带分裂发生的同时,由于ˆ𝑀𝑍ˆ𝑇联合对称,谷极化仍然不存在。与 AA 叠层体系不同,AA′体系的𝑀𝑍ˆ𝑇联合对称性可以通过层间滑动而被打破,并实现了谷极化。此外,由于扭转打破了空间反转对称性,在扭转角度分别为 13.174∘、21.787∘、27.796∘、32.204∘、38.213∘ 和 46.826∘的扭转摩尔结构中也存在山谷极化。我们的研究结果通过二维双层结构的层间滑动和扭曲拓宽了谷极化材料。
{"title":"Sliding- and twist-tunable valley polarization in bilayerNiI2","authors":"Linze Li, Xu Li, Liyan Lin, Dehe Zhang, Mingxing Chen, Di Wu, Yurong Yang","doi":"10.1103/physrevb.110.205119","DOIUrl":"https://doi.org/10.1103/physrevb.110.205119","url":null,"abstract":"Valley, as an emerging degree of freedom of electron, has attracted extensive attention on account of its huge potential in electronic component technology. Two-dimensional (2D) materials provide an ideal platform for the research of valleytronics. Here, we study the sliding and twist effects on valley of bilayer &lt;mjx-container ctxtmenu_counter=\"74\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"&gt;&lt;mjx-math data-semantic-structure=\"(2 0 1)\"&gt;&lt;mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-role=\"unknown\" data-semantic-speech=\"upper N i upper I 2\" data-semantic-type=\"subscript\"&gt;&lt;mjx-mrow&gt;&lt;mjx-mi data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"unknown\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c noic=\"true\" style=\"padding-top: 0.673em;\"&gt;N&lt;/mjx-c&gt;&lt;mjx-c noic=\"true\" style=\"padding-top: 0.673em;\"&gt;i&lt;/mjx-c&gt;&lt;mjx-c style=\"padding-top: 0.673em;\"&gt;I&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;/mjx-mrow&gt;&lt;mjx-script style=\"vertical-align: -0.15em;\"&gt;&lt;mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"&gt;&lt;mjx-c&gt;2&lt;/mjx-c&gt;&lt;/mjx-mn&gt;&lt;/mjx-script&gt;&lt;/mjx-msub&gt;&lt;/mjx-math&gt;&lt;/mjx-container&gt; by the first-principles calculations. For a monolayer, spatial inversion symmetry maintains the degeneracy of two valleys. In the AA stacking bilayer, which can be obtained by a vertical translation operation on a monolayer structure, the valley band splitting is absent due to the &lt;mjx-container ctxtmenu_counter=\"75\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" overflow=\"linebreak\" role=\"tree\" sre-explorer- style=\"font-size: 100.7%;\" tabindex=\"0\"&gt;&lt;mjx-math data-semantic-structure=\"(7 (2 0 1) 6 (5 3 4))\"&gt;&lt;mjx-mrow data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"2,5\" data-semantic-content=\"6\" data-semantic- data-semantic-owns=\"2 6 5\" data-semantic-role=\"implicit\" data-semantic-speech=\"ModifyingAbove upper P With ̂ ModifyingAbove upper T With ̂\" data-semantic-type=\"infixop\"&gt;&lt;mjx-mover data-semantic-children=\"0,1\" data-semantic- data-semantic-owns=\"0 1\" data-semantic-parent=\"7\" data-semantic-role=\"latinletter\" data-semantic-type=\"overscore\"&gt;&lt;mjx-over style=\"padding-bottom: 0.102em; padding-left: 0.379em; margin-bottom: -0.536em;\"&gt;&lt;mjx-mo data-semantic-annotation=\"accent:unknown\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"overaccent\" data-semantic-type=\"operator\" style=\"width: 0px; margin-left: -0.286em;\"&gt;&lt;mjx-c&gt;ˆ&lt;/mjx-c&gt;&lt;/mjx-mo&gt;&lt;/mjx-over&gt;&lt;mjx-base&gt;&lt;mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"&gt;&lt;mjx-c&gt;𝑃&lt;/mjx-c&gt;&lt;/mjx-mi&gt;&lt;/mjx-base&gt;&lt;/mjx-mover&gt;&lt;mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"7\" data-semantic-role=\"m","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"2 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142597331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Physical Review B
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1