The cerebellum modulates thirst

IF 21.2 1区 医学 Q1 NEUROSCIENCES Nature neuroscience Pub Date : 2024-07-10 DOI:10.1038/s41593-024-01700-9
Ila Mishra, Bing Feng, Bijoya Basu, Amanda M. Brown, Linda H. Kim, Tao Lin, Mir Abbas Raza, Amelia Moore, Abigayle Hahn, Samantha Bailey, Alaina Sharp, Juan C. Bournat, Claire Poulton, Brian Kim, Amos Langsner, Aaron Sathyanesan, Roy V. Sillitoe, Yanlin He, Atul R. Chopra
{"title":"The cerebellum modulates thirst","authors":"Ila Mishra, Bing Feng, Bijoya Basu, Amanda M. Brown, Linda H. Kim, Tao Lin, Mir Abbas Raza, Amelia Moore, Abigayle Hahn, Samantha Bailey, Alaina Sharp, Juan C. Bournat, Claire Poulton, Brian Kim, Amos Langsner, Aaron Sathyanesan, Roy V. Sillitoe, Yanlin He, Atul R. Chopra","doi":"10.1038/s41593-024-01700-9","DOIUrl":null,"url":null,"abstract":"The cerebellum, a phylogenetically ancient brain region, has long been considered strictly a motor control structure. Recent studies have implicated the cerebellum in cognition, sensation, emotion and autonomic function, making it an important target for further investigation. Here, we show that cerebellar Purkinje neurons in mice are activated by the hormone asprosin, leading to enhanced thirst, and that optogenetic or chemogenetic activation of Purkinje neurons induces rapid manifestation of water drinking. Purkinje neuron-specific asprosin receptor (Ptprd) deletion results in reduced water intake without affecting food intake and abolishes asprosin’s dipsogenic effect. Purkinje neuron-mediated motor learning and coordination were unaffected by these manipulations, indicating independent control of two divergent functions by Purkinje neurons. Our results show that the cerebellum is a thirst-modulating brain area and that asprosin–Ptprd signaling may be a potential therapeutic target for the management of thirst disorders. Chopra and colleagues show that the hormone asprosin, independent of its effects on hypothalamic AgRP neurons, activates its cell surface receptor Ptprd on cerebellar Purkinje neurons to enhance thirst for maintenance of fluid homeostasis.","PeriodicalId":19076,"journal":{"name":"Nature neuroscience","volume":null,"pages":null},"PeriodicalIF":21.2000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature neuroscience","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41593-024-01700-9","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The cerebellum, a phylogenetically ancient brain region, has long been considered strictly a motor control structure. Recent studies have implicated the cerebellum in cognition, sensation, emotion and autonomic function, making it an important target for further investigation. Here, we show that cerebellar Purkinje neurons in mice are activated by the hormone asprosin, leading to enhanced thirst, and that optogenetic or chemogenetic activation of Purkinje neurons induces rapid manifestation of water drinking. Purkinje neuron-specific asprosin receptor (Ptprd) deletion results in reduced water intake without affecting food intake and abolishes asprosin’s dipsogenic effect. Purkinje neuron-mediated motor learning and coordination were unaffected by these manipulations, indicating independent control of two divergent functions by Purkinje neurons. Our results show that the cerebellum is a thirst-modulating brain area and that asprosin–Ptprd signaling may be a potential therapeutic target for the management of thirst disorders. Chopra and colleagues show that the hormone asprosin, independent of its effects on hypothalamic AgRP neurons, activates its cell surface receptor Ptprd on cerebellar Purkinje neurons to enhance thirst for maintenance of fluid homeostasis.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
小脑调节口渴
小脑是一个系统发育古老的脑区,长期以来一直被认为是严格意义上的运动控制结构。最近的研究表明,小脑与认知、感觉、情绪和自主神经功能有关,因此成为进一步研究的重要目标。在这里,我们发现小鼠的小脑浦肯野神经元会被阿司匹林激素激活,导致渴感增强,并且浦肯野神经元的光遗传学或化学遗传学激活会诱导快速表现出饮水。Purkinje神经元特异性asprosin受体(Ptprd)缺失会导致水摄入量减少,但不影响食物摄入量,并且会取消asprosin的致渴性效应。Purkinje神经元介导的运动学习和协调不受这些操作的影响,表明Purkinje神经元对两种不同功能的独立控制。我们的研究结果表明,小脑是一个调节口渴的脑区,阿司匹林-Ptprd 信号转导可能是治疗口渴症的潜在治疗靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature neuroscience
Nature neuroscience 医学-神经科学
CiteScore
38.60
自引率
1.20%
发文量
212
审稿时长
1 months
期刊介绍: Nature Neuroscience, a multidisciplinary journal, publishes papers of the utmost quality and significance across all realms of neuroscience. The editors welcome contributions spanning molecular, cellular, systems, and cognitive neuroscience, along with psychophysics, computational modeling, and nervous system disorders. While no area is off-limits, studies offering fundamental insights into nervous system function receive priority. The journal offers high visibility to both readers and authors, fostering interdisciplinary communication and accessibility to a broad audience. It maintains high standards of copy editing and production, rigorous peer review, rapid publication, and operates independently from academic societies and other vested interests. In addition to primary research, Nature Neuroscience features news and views, reviews, editorials, commentaries, perspectives, book reviews, and correspondence, aiming to serve as the voice of the global neuroscience community.
期刊最新文献
Synergistic association of Aβ and tau pathology with cortical neurophysiology and cognitive decline in asymptomatic older adults A cell-autonomous role for border-associated macrophages in ApoE4 neurovascular dysfunction and susceptibility to white matter injury Inhibiting Ca2+ channels in Alzheimer’s disease model mice relaxes pericytes, improves cerebral blood flow and reduces immune cell stalling and hypoxia Semi-orthogonal subspaces for value mediate a binding and generalization trade-off Tonic and burst-like locus coeruleus stimulation distinctly shift network activity across the cortical hierarchy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1