首页 > 最新文献

Nature neuroscience最新文献

英文 中文
Satellite glia fuel up neurons 卫星神经胶质为神经元提供能量
IF 2 1区 医学 Q1 NEUROSCIENCES Pub Date : 2026-02-06 DOI: 10.1038/s41593-026-02209-z
Ioana A. Marin
{"title":"Satellite glia fuel up neurons","authors":"Ioana A. Marin","doi":"10.1038/s41593-026-02209-z","DOIUrl":"10.1038/s41593-026-02209-z","url":null,"abstract":"","PeriodicalId":19076,"journal":{"name":"Nature neuroscience","volume":"29 2","pages":"249-249"},"PeriodicalIF":20.0,"publicationDate":"2026-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146122861","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Calcium spikes can flip signals 钙离子峰值可以改变信号
IF 2 1区 医学 Q1 NEUROSCIENCES Pub Date : 2026-02-06 DOI: 10.1038/s41593-026-02210-6
William P. Olson
{"title":"Calcium spikes can flip signals","authors":"William P. Olson","doi":"10.1038/s41593-026-02210-6","DOIUrl":"10.1038/s41593-026-02210-6","url":null,"abstract":"","PeriodicalId":19076,"journal":{"name":"Nature neuroscience","volume":"29 2","pages":"249-249"},"PeriodicalIF":20.0,"publicationDate":"2026-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146122862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Organoids capture brain growth variation 类器官捕捉大脑生长变化
IF 2 1区 医学 Q1 NEUROSCIENCES Pub Date : 2026-02-06 DOI: 10.1038/s41593-026-02211-5
Ana Uzquiano
{"title":"Organoids capture brain growth variation","authors":"Ana Uzquiano","doi":"10.1038/s41593-026-02211-5","DOIUrl":"10.1038/s41593-026-02211-5","url":null,"abstract":"","PeriodicalId":19076,"journal":{"name":"Nature neuroscience","volume":"29 2","pages":"249-249"},"PeriodicalIF":20.0,"publicationDate":"2026-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146122864","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Drifting off to repair DNA 去修复DNA
IF 2 1区 医学 Q1 NEUROSCIENCES Pub Date : 2026-02-06 DOI: 10.1038/s41593-026-02212-4
Leonie Welberg
{"title":"Drifting off to repair DNA","authors":"Leonie Welberg","doi":"10.1038/s41593-026-02212-4","DOIUrl":"10.1038/s41593-026-02212-4","url":null,"abstract":"","PeriodicalId":19076,"journal":{"name":"Nature neuroscience","volume":"29 2","pages":"249-249"},"PeriodicalIF":20.0,"publicationDate":"2026-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146122863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Publisher Correction: Diversity and immune dynamics of choroid plexus macrophages are shaped by distinct developmental origins. 编者更正:脉络膜丛巨噬细胞的多样性和免疫动力学是由不同的发育起源形成的。
IF 2 1区 医学 Q1 NEUROSCIENCES Pub Date : 2026-02-05 DOI: 10.1038/s41593-026-02222-2
Siling Du, Khai M Nguyen, Alina Ulezko Antonova, Jose L Fachi, Patrick Fernandes Rodrigues, Alice Verdiani, Martina Molgora, Igor Smirnov, Jasmin Herz, Tornike Mamuladze, Jennifer Ponce, Amanda Swain, Mattia Bugatti, Susan Gilfillan, Marina Cella, William Vermi, Jonathan Kipnis, Marco Colonna, Simone Brioschi
{"title":"Publisher Correction: Diversity and immune dynamics of choroid plexus macrophages are shaped by distinct developmental origins.","authors":"Siling Du, Khai M Nguyen, Alina Ulezko Antonova, Jose L Fachi, Patrick Fernandes Rodrigues, Alice Verdiani, Martina Molgora, Igor Smirnov, Jasmin Herz, Tornike Mamuladze, Jennifer Ponce, Amanda Swain, Mattia Bugatti, Susan Gilfillan, Marina Cella, William Vermi, Jonathan Kipnis, Marco Colonna, Simone Brioschi","doi":"10.1038/s41593-026-02222-2","DOIUrl":"10.1038/s41593-026-02222-2","url":null,"abstract":"","PeriodicalId":19076,"journal":{"name":"Nature neuroscience","volume":" ","pages":""},"PeriodicalIF":20.0,"publicationDate":"2026-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146125913","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A generalizable foundation model for analysis of human brain MRI. 人脑MRI分析的可推广基础模型。
IF 2 1区 医学 Q1 NEUROSCIENCES Pub Date : 2026-02-05 DOI: 10.1038/s41593-026-02202-6
Divyanshu Tak, Biniam A Garomsa, Anna Zapaishchykova, Tafadzwa L Chaunzwa, Juan Carlos Climent Pardo, Zezhong Ye, John Zielke, Yashwanth Ravipati, Suraj Pai, Sri Vajapeyam, Maryam Mahootiha, Mitchell Parker, Luke R G Pike, Ceilidh Smith, Ariana M Familiar, Kevin X Liu, Sanjay Prabhu, Omar Arnaout, Pratiti Bandopadhayay, Ali Nabavizadeh, Sabine Mueller, Hugo Jwl Aerts, Raymond Y Huang, Tina Y Poussaint, Benjamin H Kann

Artificial intelligence applied to brain magnetic resonance imaging (MRI) holds potential to advance diagnosis, prognosis and treatment planning for neurological diseases. The field has been constrained, thus far, by limited training data and task-specific models that do not generalize well across patient populations and medical tasks. By leveraging self-supervised learning, pretraining and targeted adaptation, foundation models present a promising paradigm to overcome these limitations. Here we present Brain Imaging Adaptive Core (BrainIAC)-a foundation model designed to learn generalized representations from unlabeled brain MRI data and serve as a core basis for diverse downstream application adaptation. Trained and validated on 48,965 brain MRIs across a broad spectrum of tasks, we demonstrate that BrainIAC outperforms localized supervised training and other pretrained models, particularly in low-data, few-shot, settings and in high-difficulty prediction tasks, allowing for application in scenarios otherwise infeasible. BrainIAC can be integrated into imaging pipelines and multimodal frameworks and may lead to improved biomarker discovery and artificial intelligence clinical translation.

人工智能应用于脑磁共振成像(MRI)有可能推进神经系统疾病的诊断、预后和治疗计划。到目前为止,该领域受到有限的训练数据和特定任务模型的限制,这些模型不能很好地泛化到患者群体和医疗任务中。通过利用自我监督学习、预训练和目标适应,基础模型为克服这些限制提供了一个有希望的范例。在这里,我们提出了脑成像自适应核心(BrainIAC)——一个基础模型,旨在从未标记的脑MRI数据中学习广义表示,并作为各种下游应用适应的核心基础。在48,965个广泛任务的大脑核磁共振成像上进行了训练和验证,我们证明了BrainIAC优于局部监督训练和其他预训练模型,特别是在低数据、少镜头、设置和高难度预测任务中,允许在其他不可行的场景中应用。BrainIAC可以集成到成像管道和多模式框架中,并可能导致改进的生物标志物发现和人工智能临床翻译。
{"title":"A generalizable foundation model for analysis of human brain MRI.","authors":"Divyanshu Tak, Biniam A Garomsa, Anna Zapaishchykova, Tafadzwa L Chaunzwa, Juan Carlos Climent Pardo, Zezhong Ye, John Zielke, Yashwanth Ravipati, Suraj Pai, Sri Vajapeyam, Maryam Mahootiha, Mitchell Parker, Luke R G Pike, Ceilidh Smith, Ariana M Familiar, Kevin X Liu, Sanjay Prabhu, Omar Arnaout, Pratiti Bandopadhayay, Ali Nabavizadeh, Sabine Mueller, Hugo Jwl Aerts, Raymond Y Huang, Tina Y Poussaint, Benjamin H Kann","doi":"10.1038/s41593-026-02202-6","DOIUrl":"10.1038/s41593-026-02202-6","url":null,"abstract":"<p><p>Artificial intelligence applied to brain magnetic resonance imaging (MRI) holds potential to advance diagnosis, prognosis and treatment planning for neurological diseases. The field has been constrained, thus far, by limited training data and task-specific models that do not generalize well across patient populations and medical tasks. By leveraging self-supervised learning, pretraining and targeted adaptation, foundation models present a promising paradigm to overcome these limitations. Here we present Brain Imaging Adaptive Core (BrainIAC)-a foundation model designed to learn generalized representations from unlabeled brain MRI data and serve as a core basis for diverse downstream application adaptation. Trained and validated on 48,965 brain MRIs across a broad spectrum of tasks, we demonstrate that BrainIAC outperforms localized supervised training and other pretrained models, particularly in low-data, few-shot, settings and in high-difficulty prediction tasks, allowing for application in scenarios otherwise infeasible. BrainIAC can be integrated into imaging pipelines and multimodal frameworks and may lead to improved biomarker discovery and artificial intelligence clinical translation.</p>","PeriodicalId":19076,"journal":{"name":"Nature neuroscience","volume":" ","pages":""},"PeriodicalIF":20.0,"publicationDate":"2026-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146125893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neural population geometry and optimal coding of tasks with shared latent structure 共享潜在结构任务的神经种群几何与优化编码
IF 25 1区 医学 Q1 NEUROSCIENCES Pub Date : 2026-02-04 DOI: 10.1038/s41593-025-02183-y
Albert J. Wakhloo, Will Slatton, SueYeon Chung
Animals can recognize latent structures in their environment and apply this information to efficiently navigate the world. Several works argue that the brain supports these abilities by forming neural representations from which behaviorally relevant variables can be read out across contexts and tasks. However, it is unclear which features of neural activity facilitate downstream readout. Here we analytically determine the geometric properties of neural activity that govern linear readout generalization on a set of tasks sharing a common latent structure. We show that four statistics summarizing the dimensionality, factorization and correlation structures of neural activity determine generalization. Early in learning, optimal neural representations are lower dimensional and exhibit higher correlations between single units and task variables than late in learning. We support these predictions through biological and artificial neural data analysis. Our results tie the linearly decodable information in neural population activity to its geometry.
动物可以识别环境中潜在的结构,并利用这些信息有效地导航世界。一些研究认为,大脑通过形成神经表征来支持这些能力,从神经表征中可以读出跨环境和任务的行为相关变量。然而,目前尚不清楚神经活动的哪些特征促进了下游读出。在这里,我们分析确定了神经活动的几何性质,这些神经活动控制着一组共享共同潜在结构的任务的线性读出泛化。我们证明了总结神经活动的维数、因子分解和相关结构的四种统计量决定了泛化。在学习早期,最优神经表征是较低维度的,并且在单个单元和任务变量之间表现出比学习后期更高的相关性。我们通过生物和人工神经数据分析来支持这些预测。我们的结果将神经种群活动中的线性可解码信息与其几何结构联系起来。
{"title":"Neural population geometry and optimal coding of tasks with shared latent structure","authors":"Albert J. Wakhloo, Will Slatton, SueYeon Chung","doi":"10.1038/s41593-025-02183-y","DOIUrl":"https://doi.org/10.1038/s41593-025-02183-y","url":null,"abstract":"Animals can recognize latent structures in their environment and apply this information to efficiently navigate the world. Several works argue that the brain supports these abilities by forming neural representations from which behaviorally relevant variables can be read out across contexts and tasks. However, it is unclear which features of neural activity facilitate downstream readout. Here we analytically determine the geometric properties of neural activity that govern linear readout generalization on a set of tasks sharing a common latent structure. We show that four statistics summarizing the dimensionality, factorization and correlation structures of neural activity determine generalization. Early in learning, optimal neural representations are lower dimensional and exhibit higher correlations between single units and task variables than late in learning. We support these predictions through biological and artificial neural data analysis. Our results tie the linearly decodable information in neural population activity to its geometry.","PeriodicalId":19076,"journal":{"name":"Nature neuroscience","volume":"23 1","pages":""},"PeriodicalIF":25.0,"publicationDate":"2026-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146116263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Studying infant vision in the scanner and in silico reveals the richness of early brain function. 通过扫描仪和计算机研究婴儿视觉揭示了早期大脑功能的丰富性。
IF 2 1区 医学 Q1 NEUROSCIENCES Pub Date : 2026-02-02 DOI: 10.1038/s41593-025-02198-5
{"title":"Studying infant vision in the scanner and in silico reveals the richness of early brain function.","authors":"","doi":"10.1038/s41593-025-02198-5","DOIUrl":"https://doi.org/10.1038/s41593-025-02198-5","url":null,"abstract":"","PeriodicalId":19076,"journal":{"name":"Nature neuroscience","volume":" ","pages":""},"PeriodicalIF":20.0,"publicationDate":"2026-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146106342","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Infants have rich visual categories in ventrotemporal cortex at 2 months of age 婴儿在2月龄时具有丰富的腹颞叶皮层视觉分类
IF 25 1区 医学 Q1 NEUROSCIENCES Pub Date : 2026-02-02 DOI: 10.1038/s41593-025-02187-8
Cliona O’Doherty, Áine T. Dineen, Anna Truzzi, Graham King, Lorijn Zaadnoordijk, Keelin Harrison, Enna-Louise D’Arcy, Jessica White, Chiara Caldinelli, Tamrin Holloway, Anna Kravchenko, Jörn Diedrichsen, Ailbhe Tarrant, Angela T. Byrne, Adrienne Foran, Eleanor J. Molloy, Rhodri Cusack
What are the foundations of visual categories in the human brain? Although infant looking behavior characterizes the development of overt categorization, it cannot measure neural representation or distinguish the underlying mechanism. For this, we need rich neuroimaging from young infants and the capacity to apply advanced computational models of vision. In this study, we conducted an awake functional magnetic resonance imaging (fMRI) study of more than 100 2-month-old infants, with follow-ups at 9 months, finding that categorical structure is present in high-level visual cortex from 2 months of age. This precedes its emergence in lateral visual cortex, suggesting non-hierarchical development of category representations. A deep neural network model aligned with infants’ representational geometry, indicating that the features comprising infants’ category template span a range of complexities and can be learned from the statistics of visual input. Our results reveal the existence of complex function in ventral visual cortex at 2 months of age and describe the early development of category perception.
人类大脑中视觉分类的基础是什么?虽然婴儿注视行为是显性分类发展的特征,但它不能衡量神经表征或区分潜在的机制。为此,我们需要幼儿丰富的神经影像和应用先进的视觉计算模型的能力。在这项研究中,我们对100多名2个月大的婴儿进行了清醒功能磁共振成像(fMRI)研究,并在9个月大时进行了随访,发现分类结构从2个月大开始就存在于高级视觉皮层中。这先于它在侧视皮层的出现,表明类别表征的非分层发展。一个深度神经网络模型与婴儿的具象几何相一致,表明构成婴儿类别模板的特征跨越了一系列复杂性,并且可以从视觉输入的统计中学习。我们的研究结果揭示了婴儿2月龄时腹侧视觉皮层复杂功能的存在,并描述了类别知觉的早期发展。
{"title":"Infants have rich visual categories in ventrotemporal cortex at 2 months of age","authors":"Cliona O’Doherty, Áine T. Dineen, Anna Truzzi, Graham King, Lorijn Zaadnoordijk, Keelin Harrison, Enna-Louise D’Arcy, Jessica White, Chiara Caldinelli, Tamrin Holloway, Anna Kravchenko, Jörn Diedrichsen, Ailbhe Tarrant, Angela T. Byrne, Adrienne Foran, Eleanor J. Molloy, Rhodri Cusack","doi":"10.1038/s41593-025-02187-8","DOIUrl":"https://doi.org/10.1038/s41593-025-02187-8","url":null,"abstract":"What are the foundations of visual categories in the human brain? Although infant looking behavior characterizes the development of overt categorization, it cannot measure neural representation or distinguish the underlying mechanism. For this, we need rich neuroimaging from young infants and the capacity to apply advanced computational models of vision. In this study, we conducted an awake functional magnetic resonance imaging (fMRI) study of more than 100 2-month-old infants, with follow-ups at 9 months, finding that categorical structure is present in high-level visual cortex from 2 months of age. This precedes its emergence in lateral visual cortex, suggesting non-hierarchical development of category representations. A deep neural network model aligned with infants’ representational geometry, indicating that the features comprising infants’ category template span a range of complexities and can be learned from the statistics of visual input. Our results reveal the existence of complex function in ventral visual cortex at 2 months of age and describe the early development of category perception.","PeriodicalId":19076,"journal":{"name":"Nature neuroscience","volume":"30 1","pages":""},"PeriodicalIF":25.0,"publicationDate":"2026-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146102124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Corticothalamic communication for action coordination in a skilled motor behavior. 在熟练的运动行为中协调动作的皮质丘脑通讯。
IF 2 1区 医学 Q1 NEUROSCIENCES Pub Date : 2026-01-29 DOI: 10.1038/s41593-025-02195-8
Yi Li, Xu An, Patrick J Mulcahey, Yongjun Qian, X Hermione Xu, Shengli Zhao, Hemanth Mohan, Shreyas M Suryanarayana, Ludovica Bachschmid-Romano, Nicolas Brunel, Ian Q Whishaw, Z Josh Huang

The coordination of forelimb and orofacial movements to compose an ethological reach-to-consume behavior likely involves neural communication across brain regions. Leveraging wide-field imaging and photoinhibition to survey across the cortex, we identified a cortical network and a high-order motor area (the central region of the secondary motor cortex (MOs-c)), which coordinate action progression in a mouse reach-and-withdraw-to-drink (RWD) behavior. Electrophysiology and photoinhibition across multiple projection neuron types within the MOs-c revealed differential contributions of pyramidal tract and corticothalamic (CTMOs) output channels to action progression and hand-mouth coordination. Notably, CTMOs display sustained firing throughout RWD actions and selectively enhance RWD-relevant activity in postsynaptic thalamus neurons, which also contribute to action coordination. CTMOs receive converging monosynaptic inputs from forelimb and orofacial sensorimotor areas and are reciprocally connected to thalamic neurons, which project back to the cortical network. Therefore, the motor cortex CT channel may selectively amplify the thalamic integration of cortical and subcortical sensorimotor streams to coordinate a skilled motor behavior.

前肢和口面部运动的协调构成了一种行为学上的伸手消费行为,可能涉及到大脑区域之间的神经交流。利用宽视场成像和光抑制对整个皮层进行调查,我们确定了一个皮层网络和一个高阶运动区域(次级运动皮层的中心区域(MOs-c)),它们协调了小鼠伸手戒酒(RWD)行为的行动进展。MOs-c内多种投射神经元类型的电生理和光抑制揭示了锥体束和皮质丘脑(CTMOs)输出通道对动作进展和手口协调的不同贡献。值得注意的是,CTMOs在RWD动作中表现出持续的放电,并选择性地增强了突触后丘脑神经元中RWD相关的活动,这也有助于动作协调。ctmo接收来自前肢和口面部感觉运动区的聚合单突触输入,并与丘脑神经元相互连接,丘脑神经元投射回皮层网络。因此,运动皮质CT通道可能选择性地放大丘脑皮层和皮层下感觉运动流的整合,以协调熟练的运动行为。
{"title":"Corticothalamic communication for action coordination in a skilled motor behavior.","authors":"Yi Li, Xu An, Patrick J Mulcahey, Yongjun Qian, X Hermione Xu, Shengli Zhao, Hemanth Mohan, Shreyas M Suryanarayana, Ludovica Bachschmid-Romano, Nicolas Brunel, Ian Q Whishaw, Z Josh Huang","doi":"10.1038/s41593-025-02195-8","DOIUrl":"10.1038/s41593-025-02195-8","url":null,"abstract":"<p><p>The coordination of forelimb and orofacial movements to compose an ethological reach-to-consume behavior likely involves neural communication across brain regions. Leveraging wide-field imaging and photoinhibition to survey across the cortex, we identified a cortical network and a high-order motor area (the central region of the secondary motor cortex (MOs-c)), which coordinate action progression in a mouse reach-and-withdraw-to-drink (RWD) behavior. Electrophysiology and photoinhibition across multiple projection neuron types within the MOs-c revealed differential contributions of pyramidal tract and corticothalamic (CT<sup>MOs</sup>) output channels to action progression and hand-mouth coordination. Notably, CT<sup>MOs</sup> display sustained firing throughout RWD actions and selectively enhance RWD-relevant activity in postsynaptic thalamus neurons, which also contribute to action coordination. CT<sup>MOs</sup> receive converging monosynaptic inputs from forelimb and orofacial sensorimotor areas and are reciprocally connected to thalamic neurons, which project back to the cortical network. Therefore, the motor cortex CT channel may selectively amplify the thalamic integration of cortical and subcortical sensorimotor streams to coordinate a skilled motor behavior.</p>","PeriodicalId":19076,"journal":{"name":"Nature neuroscience","volume":" ","pages":""},"PeriodicalIF":20.0,"publicationDate":"2026-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146086668","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nature neuroscience
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1