首页 > 最新文献

Nature neuroscience最新文献

英文 中文
Inhibiting Ca2+ channels in Alzheimer’s disease model mice relaxes pericytes, improves cerebral blood flow and reduces immune cell stalling and hypoxia 抑制阿尔茨海默病模型小鼠的 Ca2+ 通道可松弛周细胞、改善脑血流并减少免疫细胞停滞和缺氧现象
IF 25 1区 医学 Q1 NEUROSCIENCES Pub Date : 2024-09-18 DOI: 10.1038/s41593-024-01753-w
Nils Korte, Anna Barkaway, Jack Wells, Felipe Freitas, Huma Sethi, Stephen P. Andrews, John Skidmore, Beth Stevens, David Attwell

Early in Alzheimer’s disease (AD), pericytes constrict capillaries, increasing their hydraulic resistance and trapping of immune cells and, thus, decreasing cerebral blood flow (CBF). Therapeutic approaches to attenuate pericyte-mediated constriction in AD are lacking. Here, using in vivo two-photon imaging with laser Doppler and speckle flowmetry and magnetic resonance imaging, we show that Ca2+ entry via L-type voltage-gated calcium channels (CaVs) controls the contractile tone of pericytes. In AD model mice, we identifed pericytes throughout the capillary bed as key drivers of an immune reactive oxygen species (ROS)-evoked and pericyte intracellular calcium concentration ([Ca2+]i)-mediated decrease in microvascular flow. Blocking CaVs with nimodipine early in disease progression improved CBF, reduced leukocyte stalling at pericyte somata and attenuated brain hypoxia. Amyloid β (Aβ)-evoked pericyte contraction in human cortical tissue was also greatly reduced by CaV block. Lowering pericyte [Ca2+]i early in AD may, thus, offer a therapeutic strategy to enhance brain energy supply and possibly cognitive function in AD.

阿尔茨海默病(AD)早期,周细胞会收缩毛细血管,增加毛细血管的水阻力并困住免疫细胞,从而降低脑血流量(CBF)。目前还缺乏治疗方法来减弱包膜细胞介导的AD收缩。在这里,我们利用体内双光子成像激光多普勒和斑点血流测量以及磁共振成像技术,证明了通过 L 型电压门控钙通道(CaVs)进入的 Ca2+ 控制着周细胞的收缩张力。在AD模型小鼠中,我们发现整个毛细血管床的周细胞是免疫活性氧(ROS)诱发和周细胞胞内钙浓度([Ca2+]i)介导的微血管流量下降的主要驱动因素。在疾病进展早期用尼莫地平阻断钙离子通道可改善CBF,减少白细胞在周细胞体节的滞留,并减轻脑缺氧。淀粉样β(Aβ)诱发的人皮质组织周细胞收缩也因 CaV 阻断而大大减少。因此,在注意力缺失症早期降低周细胞[Ca2+]i可能是提高大脑能量供应和认知功能的一种治疗策略。
{"title":"Inhibiting Ca2+ channels in Alzheimer’s disease model mice relaxes pericytes, improves cerebral blood flow and reduces immune cell stalling and hypoxia","authors":"Nils Korte, Anna Barkaway, Jack Wells, Felipe Freitas, Huma Sethi, Stephen P. Andrews, John Skidmore, Beth Stevens, David Attwell","doi":"10.1038/s41593-024-01753-w","DOIUrl":"https://doi.org/10.1038/s41593-024-01753-w","url":null,"abstract":"<p>Early in Alzheimer’s disease (AD), pericytes constrict capillaries, increasing their hydraulic resistance and trapping of immune cells and, thus, decreasing cerebral blood flow (CBF). Therapeutic approaches to attenuate pericyte-mediated constriction in AD are lacking. Here, using in vivo two-photon imaging with laser Doppler and speckle flowmetry and magnetic resonance imaging, we show that Ca<sup>2+</sup> entry via L-type voltage-gated calcium channels (CaVs) controls the contractile tone of pericytes. In AD model mice, we identifed pericytes throughout the capillary bed as key drivers of an immune reactive oxygen species (ROS)-evoked and pericyte intracellular calcium concentration ([Ca<sup>2+</sup>]<sub>i</sub>)-mediated decrease in microvascular flow. Blocking CaVs with nimodipine early in disease progression improved CBF, reduced leukocyte stalling at pericyte somata and attenuated brain hypoxia. Amyloid β (Aβ)-evoked pericyte contraction in human cortical tissue was also greatly reduced by CaV block. Lowering pericyte [Ca<sup>2+</sup>]<sub>i</sub> early in AD may, thus, offer a therapeutic strategy to enhance brain energy supply and possibly cognitive function in AD.</p>","PeriodicalId":19076,"journal":{"name":"Nature neuroscience","volume":null,"pages":null},"PeriodicalIF":25.0,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142236288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A cell-autonomous role for border-associated macrophages in ApoE4 neurovascular dysfunction and susceptibility to white matter injury 边界相关巨噬细胞在载脂蛋白E4神经血管功能障碍和白质损伤易感性中的细胞自主作用
IF 25 1区 医学 Q1 NEUROSCIENCES Pub Date : 2024-09-18 DOI: 10.1038/s41593-024-01757-6
Antoine Anfray, Samantha Schaeffer, Yorito Hattori, Monica M. Santisteban, Nicole Casey, Gang Wang, Michael Strickland, Ping Zhou, David M. Holtzman, Josef Anrather, Laibaik Park, Costantino Iadecola

Apolipoprotein E4 (ApoE4), the strongest genetic risk factor for sporadic Alzheimer’s disease, is also a risk factor for microvascular pathologies leading to cognitive impairment, particularly subcortical white matter injury. These effects have been attributed to alterations in the regulation of the brain blood supply, but the cellular source of ApoE4 and the underlying mechanisms remain unclear. In mice expressing human ApoE3 or ApoE4, we report that border-associated macrophages (BAMs), myeloid cells closely apposed to neocortical microvessels, are both sources and effectors of ApoE4 mediating the neurovascular dysfunction through reactive oxygen species. ApoE4 in BAMs is solely responsible for the increased susceptibility to oligemic white matter damage in ApoE4 mice and is sufficient to enhance damage in ApoE3 mice. The data unveil a new aspect of BAM pathobiology and highlight a previously unrecognized cell-autonomous role of BAM in the neurovascular dysfunction of ApoE4 with potential therapeutic implications.

载脂蛋白 E4(ApoE4)是散发性阿尔茨海默病的最强遗传风险因素,也是导致认知障碍的微血管病变的风险因素,尤其是皮层下白质损伤。这些影响被归因于大脑供血调节的改变,但载脂蛋白E4的细胞来源和内在机制仍不清楚。在表达人类载脂蛋白E3或载脂蛋白E4的小鼠中,我们发现边界相关巨噬细胞(BAMs)--与新皮质微血管紧密相连的髓细胞--既是载脂蛋白E4的来源,也是载脂蛋白E4的效应器,通过活性氧介导神经血管功能障碍。BAMs 中的载脂蛋白 E4 是导致载脂蛋白 E4 小鼠白质少血症损伤易感性增加的唯一原因,也足以加重载脂蛋白 E3 小鼠的损伤。这些数据揭示了 BAM 病理生物学的一个新方面,并强调了 BAM 在载脂蛋白 E4 神经血管功能障碍中的一个以前未被认识到的细胞自主作用,具有潜在的治疗意义。
{"title":"A cell-autonomous role for border-associated macrophages in ApoE4 neurovascular dysfunction and susceptibility to white matter injury","authors":"Antoine Anfray, Samantha Schaeffer, Yorito Hattori, Monica M. Santisteban, Nicole Casey, Gang Wang, Michael Strickland, Ping Zhou, David M. Holtzman, Josef Anrather, Laibaik Park, Costantino Iadecola","doi":"10.1038/s41593-024-01757-6","DOIUrl":"https://doi.org/10.1038/s41593-024-01757-6","url":null,"abstract":"<p>Apolipoprotein E4 (ApoE4), the strongest genetic risk factor for sporadic Alzheimer’s disease, is also a risk factor for microvascular pathologies leading to cognitive impairment, particularly subcortical white matter injury. These effects have been attributed to alterations in the regulation of the brain blood supply, but the cellular source of ApoE4 and the underlying mechanisms remain unclear. In mice expressing human ApoE3 or ApoE4, we report that border-associated macrophages (BAMs), myeloid cells closely apposed to neocortical microvessels, are both sources and effectors of ApoE4 mediating the neurovascular dysfunction through reactive oxygen species. ApoE4 in BAMs is solely responsible for the increased susceptibility to oligemic white matter damage in ApoE4 mice and is sufficient to enhance damage in ApoE3 mice. The data unveil a new aspect of BAM pathobiology and highlight a previously unrecognized cell-autonomous role of BAM in the neurovascular dysfunction of ApoE4 with potential therapeutic implications.</p>","PeriodicalId":19076,"journal":{"name":"Nature neuroscience","volume":null,"pages":null},"PeriodicalIF":25.0,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142236283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synergistic association of Aβ and tau pathology with cortical neurophysiology and cognitive decline in asymptomatic older adults 无症状老年人的 Aβ 和 tau 病理学与皮层神经生理学和认知能力下降之间的协同关系
IF 25 1区 医学 Q1 NEUROSCIENCES Pub Date : 2024-09-18 DOI: 10.1038/s41593-024-01763-8
Jonathan Gallego-Rudolf, Alex I. Wiesman, Alexa Pichet Binette, Sylvia Villeneuve, Sylvain Baillet

Animal and computational models of Alzheimer’s disease (AD) indicate that early amyloid-β (Aβ) deposits drive neurons into a hyperactive regime, and that subsequent tau depositions manifest an opposite, suppressive effect as behavioral deficits emerge. Here we report analogous changes in macroscopic oscillatory neurophysiology in the human brain. We used positron emission tomography and task-free magnetoencephalography to test the effects of Aβ and tau deposition on cortical neurophysiology in 104 cognitively unimpaired older adults with a family history of sporadic AD. In these asymptomatic individuals, we found that Aβ depositions colocalize with accelerated neurophysiological activity. In those also presenting medial–temporal tau pathology, linear mixed effects of Aβ and tau depositions indicate a shift toward slower neurophysiological activity, which was also linked to cognitive decline. We conclude that early Aβ and tau depositions relate synergistically to human cortical neurophysiology and subsequent cognitive decline. Our findings provide insight into the multifaceted neurophysiological mechanisms engaged in the preclinical phases of AD.

阿尔茨海默病(AD)的动物模型和计算模型表明,早期淀粉样蛋白-β(Aβ)沉积会促使神经元进入亢奋状态,而随后的tau沉积则会随着行为障碍的出现而产生相反的抑制作用。在这里,我们报告了人脑中宏观振荡神经生理学的类似变化。我们使用正电子发射断层扫描和无任务脑磁图来测试 Aβ 和 tau 沉积对 104 名有散发性老年痴呆症家族史、认知功能未受损的老年人大脑皮层神经生理学的影响。我们发现,在这些无症状的人中,Aβ沉积与神经电生理活动的加速有共同之处。在那些同时出现内颞侧 tau 病理学的患者中,Aβ 和 tau 沉积的线性混合效应表明神经生理活动转向缓慢,这也与认知能力下降有关。我们的结论是,早期 Aβ 和 tau 沉积与人类大脑皮层神经生理学和随后的认知能力下降有协同关系。我们的研究结果让我们深入了解了多发性硬化症临床前期所涉及的多方面神经生理学机制。
{"title":"Synergistic association of Aβ and tau pathology with cortical neurophysiology and cognitive decline in asymptomatic older adults","authors":"Jonathan Gallego-Rudolf, Alex I. Wiesman, Alexa Pichet Binette, Sylvia Villeneuve, Sylvain Baillet","doi":"10.1038/s41593-024-01763-8","DOIUrl":"https://doi.org/10.1038/s41593-024-01763-8","url":null,"abstract":"<p>Animal and computational models of Alzheimer’s disease (AD) indicate that early amyloid-β (Aβ) deposits drive neurons into a hyperactive regime, and that subsequent tau depositions manifest an opposite, suppressive effect as behavioral deficits emerge. Here we report analogous changes in macroscopic oscillatory neurophysiology in the human brain. We used positron emission tomography and task-free magnetoencephalography to test the effects of Aβ and tau deposition on cortical neurophysiology in 104 cognitively unimpaired older adults with a family history of sporadic AD. In these asymptomatic individuals, we found that Aβ depositions colocalize with accelerated neurophysiological activity. In those also presenting medial–temporal tau pathology, linear mixed effects of Aβ and tau depositions indicate a shift toward slower neurophysiological activity, which was also linked to cognitive decline. We conclude that early Aβ and tau depositions relate synergistically to human cortical neurophysiology and subsequent cognitive decline. Our findings provide insight into the multifaceted neurophysiological mechanisms engaged in the preclinical phases of AD.</p>","PeriodicalId":19076,"journal":{"name":"Nature neuroscience","volume":null,"pages":null},"PeriodicalIF":25.0,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142236282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Semi-orthogonal subspaces for value mediate a binding and generalization trade-off 价值的半正交子空间介导约束与泛化之间的权衡
IF 25 1区 医学 Q1 NEUROSCIENCES Pub Date : 2024-09-17 DOI: 10.1038/s41593-024-01758-5
W. Jeffrey Johnston, Justin M. Fine, Seng Bum Michael Yoo, R. Becket Ebitz, Benjamin Y. Hayden

When choosing between options, we must associate their values with the actions needed to select them. We hypothesize that the brain solves this binding problem through neural population subspaces. Here, in macaques performing a choice task, we show that neural populations in five reward-sensitive regions encode the values of offers presented on the left and right in distinct subspaces. This encoding is sufficient to bind offer values to their locations while preserving abstract value information. After offer presentation, all areas encode the value of the first and second offers in orthogonal subspaces; this orthogonalization also affords binding. Our binding-by-subspace hypothesis makes two new predictions confirmed by the data. First, behavioral errors should correlate with spatial, but not temporal, neural misbinding. Second, behavioral errors should increase when offers have low or high values, compared to medium values, even when controlling for value difference. Together, these results support the idea that the brain uses semi-orthogonal subspaces to bind features.

在选项之间做出选择时,我们必须将它们的价值与选择这些选项所需的行动联系起来。我们假设大脑是通过神经群子空间来解决这一关联问题的。在这里,我们在猕猴执行选择任务时发现,五个奖赏敏感区域的神经群会在不同的子空间中对左右两侧出现的提议值进行编码。这种编码足以在保留抽象价值信息的同时将要约价值与其位置联系起来。要约呈现后,所有区域都会在正交子空间中对第一个和第二个要约的价值进行编码;这种正交化也能实现绑定。我们的子空间绑定假设提出了两个新的预测,并得到了数据的证实。首先,行为错误应该与空间神经错误绑定相关,而不是与时间神经错误绑定相关。其次,与中等价值相比,当提议的价值较低或较高时,即使控制了价值差异,行为错误也会增加。这些结果共同支持了大脑使用半正交子空间来绑定特征的观点。
{"title":"Semi-orthogonal subspaces for value mediate a binding and generalization trade-off","authors":"W. Jeffrey Johnston, Justin M. Fine, Seng Bum Michael Yoo, R. Becket Ebitz, Benjamin Y. Hayden","doi":"10.1038/s41593-024-01758-5","DOIUrl":"https://doi.org/10.1038/s41593-024-01758-5","url":null,"abstract":"<p>When choosing between options, we must associate their values with the actions needed to select them. We hypothesize that the brain solves this binding problem through neural population subspaces. Here, in macaques performing a choice task, we show that neural populations in five reward-sensitive regions encode the values of offers presented on the left and right in distinct subspaces. This encoding is sufficient to bind offer values to their locations while preserving abstract value information. After offer presentation, all areas encode the value of the first and second offers in orthogonal subspaces; this orthogonalization also affords binding. Our binding-by-subspace hypothesis makes two new predictions confirmed by the data. First, behavioral errors should correlate with spatial, but not temporal, neural misbinding. Second, behavioral errors should increase when offers have low or high values, compared to medium values, even when controlling for value difference. Together, these results support the idea that the brain uses semi-orthogonal subspaces to bind features.</p>","PeriodicalId":19076,"journal":{"name":"Nature neuroscience","volume":null,"pages":null},"PeriodicalIF":25.0,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142235132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tonic and burst-like locus coeruleus stimulation distinctly shift network activity across the cortical hierarchy 节律性和猝发样刺激可明显改变整个大脑皮层的网络活动
IF 25 1区 医学 Q1 NEUROSCIENCES Pub Date : 2024-09-16 DOI: 10.1038/s41593-024-01755-8
Christina Grimm, Sian N. Duss, Mattia Privitera, Brandon R. Munn, Nikolaos Karalis, Stefan Frässle, Maria Wilhelm, Tommaso Patriarchi, Daniel Razansky, Nicole Wenderoth, James M. Shine, Johannes Bohacek, Valerio Zerbi

Noradrenaline (NA) release from the locus coeruleus (LC) changes activity and connectivity in neuronal networks across the brain, modulating multiple behavioral states. NA release is mediated by both tonic and burst-like LC activity. However, it is unknown whether the functional changes in target areas depend on these firing patterns. Using optogenetics, photometry, electrophysiology and functional magnetic resonance imaging in mice, we show that tonic and burst-like LC firing patterns elicit brain responses that hinge on their distinct NA release dynamics. During moderate tonic LC activation, NA release engages regions associated with associative processing, while burst-like stimulation biases the brain toward sensory processing. These activation patterns locally couple with increased astrocytic and inhibitory activity and change the brain’s topological configuration in line with the hierarchical organization of the cerebral cortex. Together, these findings reveal how the LC–NA system achieves a nuanced regulation of global circuit operations.

去甲肾上腺素(NA)从脑小叶位置(LC)释放,会改变整个大脑神经元网络的活动和连接,从而调节多种行为状态。NA的释放是由LC的强直性和爆发性活动介导的。然而,目标区域的功能变化是否取决于这些发射模式尚不得而知。通过在小鼠体内使用光遗传学、光度计、电生理学和功能磁共振成像技术,我们发现强直性和爆发样 LC 发射模式会引起大脑反应,而这些反应取决于它们不同的 NA 释放动态。在适度的强直性 LC 激活过程中,NA 的释放涉及与联想处理相关的区域,而爆发式刺激则使大脑偏向于感觉处理。这些激活模式在局部与增加的星形胶质细胞和抑制性活动相结合,改变了大脑的拓扑结构,使其与大脑皮层的分层组织相一致。这些发现共同揭示了 LC-NA 系统如何实现对全局电路运行的细微调节。
{"title":"Tonic and burst-like locus coeruleus stimulation distinctly shift network activity across the cortical hierarchy","authors":"Christina Grimm, Sian N. Duss, Mattia Privitera, Brandon R. Munn, Nikolaos Karalis, Stefan Frässle, Maria Wilhelm, Tommaso Patriarchi, Daniel Razansky, Nicole Wenderoth, James M. Shine, Johannes Bohacek, Valerio Zerbi","doi":"10.1038/s41593-024-01755-8","DOIUrl":"https://doi.org/10.1038/s41593-024-01755-8","url":null,"abstract":"<p>Noradrenaline (NA) release from the locus coeruleus (LC) changes activity and connectivity in neuronal networks across the brain, modulating multiple behavioral states. NA release is mediated by both tonic and burst-like LC activity. However, it is unknown whether the functional changes in target areas depend on these firing patterns. Using optogenetics, photometry, electrophysiology and functional magnetic resonance imaging in mice, we show that tonic and burst-like LC firing patterns elicit brain responses that hinge on their distinct NA release dynamics. During moderate tonic LC activation, NA release engages regions associated with associative processing, while burst-like stimulation biases the brain toward sensory processing. These activation patterns locally couple with increased astrocytic and inhibitory activity and change the brain’s topological configuration in line with the hierarchical organization of the cerebral cortex. Together, these findings reveal how the LC–NA system achieves a nuanced regulation of global circuit operations.</p>","PeriodicalId":19076,"journal":{"name":"Nature neuroscience","volume":null,"pages":null},"PeriodicalIF":25.0,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142234451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neuroanatomical changes observed over the course of a human pregnancy 在人类怀孕期间观察到的神经解剖学变化
IF 25 1区 医学 Q1 NEUROSCIENCES Pub Date : 2024-09-16 DOI: 10.1038/s41593-024-01741-0
Laura Pritschet, Caitlin M. Taylor, Daniela Cossio, Joshua Faskowitz, Tyler Santander, Daniel A. Handwerker, Hannah Grotzinger, Evan Layher, Elizabeth R. Chrastil, Emily G. Jacobs

Pregnancy is a period of profound hormonal and physiological changes experienced by millions of women annually, yet the neural changes unfolding in the maternal brain throughout gestation are not well studied in humans. Leveraging precision imaging, we mapped neuroanatomical changes in an individual from preconception through 2 years postpartum. Pronounced decreases in gray matter volume and cortical thickness were evident across the brain, standing in contrast to increases in white matter microstructural integrity, ventricle volume and cerebrospinal fluid, with few regions untouched by the transition to motherhood. This dataset serves as a comprehensive map of the human brain across gestation, providing an open-access resource for the brain imaging community to further explore and understand the maternal brain.

每年都有数百万妇女在怀孕期间经历深刻的荷尔蒙和生理变化,但人类对整个妊娠期母体大脑神经变化的研究还不够深入。利用精确成像技术,我们绘制了一个人从怀孕前到产后两年的神经解剖变化图。整个大脑的灰质体积和皮质厚度明显减少,与之形成鲜明对比的是白质微结构完整性、脑室体积和脑脊液的增加,很少有区域在向母亲过渡时没有受到影响。该数据集是整个妊娠期人类大脑的综合地图,为大脑成像界进一步探索和了解孕产妇大脑提供了一个开放访问的资源。
{"title":"Neuroanatomical changes observed over the course of a human pregnancy","authors":"Laura Pritschet, Caitlin M. Taylor, Daniela Cossio, Joshua Faskowitz, Tyler Santander, Daniel A. Handwerker, Hannah Grotzinger, Evan Layher, Elizabeth R. Chrastil, Emily G. Jacobs","doi":"10.1038/s41593-024-01741-0","DOIUrl":"https://doi.org/10.1038/s41593-024-01741-0","url":null,"abstract":"<p>Pregnancy is a period of profound hormonal and physiological changes experienced by millions of women annually, yet the neural changes unfolding in the maternal brain throughout gestation are not well studied in humans. Leveraging precision imaging, we mapped neuroanatomical changes in an individual from preconception through 2 years postpartum. Pronounced decreases in gray matter volume and cortical thickness were evident across the brain, standing in contrast to increases in white matter microstructural integrity, ventricle volume and cerebrospinal fluid, with few regions untouched by the transition to motherhood. This dataset serves as a comprehensive map of the human brain across gestation, providing an open-access resource for the brain imaging community to further explore and understand the maternal brain.</p>","PeriodicalId":19076,"journal":{"name":"Nature neuroscience","volume":null,"pages":null},"PeriodicalIF":25.0,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142235133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Vagus nerve stimulation recruits the central cholinergic system to enhance perceptual learning 迷走神经刺激可调动中枢胆碱能系统增强知觉学习能力
IF 25 1区 医学 Q1 NEUROSCIENCES Pub Date : 2024-09-16 DOI: 10.1038/s41593-024-01767-4
Kathleen A. Martin, Eleni S. Papadoyannis, Jennifer K. Schiavo, Saba Shokat Fadaei, Habon A. Issa, Soomin C. Song, Sofia Orrey Valencia, Nesibe Z. Temiz, Matthew J. McGinley, David A. McCormick, Robert C. Froemke

Perception can be refined by experience, up to certain limits. It is unclear whether perceptual limits are absolute or could be partially overcome via enhanced neuromodulation and/or plasticity. Recent studies suggest that peripheral nerve stimulation, specifically vagus nerve stimulation (VNS), can alter neural activity and augment experience-dependent plasticity, although little is known about central mechanisms recruited by VNS. Here we developed an auditory discrimination task for mice implanted with a VNS electrode. VNS applied during behavior gradually improved discrimination abilities beyond the level achieved by training alone. Two-photon imaging revealed VNS induced changes to auditory cortical responses and activated cortically projecting cholinergic axons. Anatomical and optogenetic experiments indicated that VNS can enhance task performance through activation of the central cholinergic system. These results highlight the importance of cholinergic modulation for the efficacy of VNS and may contribute to further refinement of VNS methodology for clinical conditions.

感知可以在一定限度内通过经验得到完善。目前还不清楚知觉极限是绝对的,还是可以通过增强神经调节和/或可塑性来部分克服。最近的研究表明,外周神经刺激,特别是迷走神经刺激(VNS),可以改变神经活动并增强依赖经验的可塑性,但人们对 VNS 的中枢机制知之甚少。在此,我们为植入 VNS 电极的小鼠开发了一种听觉辨别任务。在行为过程中应用 VNS 可逐渐提高辨别能力,超过单独训练所能达到的水平。双光子成像显示,VNS诱导了听觉皮层反应的变化,并激活了皮层投射的胆碱能轴突。解剖学和光遗传学实验表明,VNS可通过激活中枢胆碱能系统提高任务表现。这些结果凸显了胆碱能调节对 VNS 疗效的重要性,可能有助于进一步完善 VNS 临床治疗方法。
{"title":"Vagus nerve stimulation recruits the central cholinergic system to enhance perceptual learning","authors":"Kathleen A. Martin, Eleni S. Papadoyannis, Jennifer K. Schiavo, Saba Shokat Fadaei, Habon A. Issa, Soomin C. Song, Sofia Orrey Valencia, Nesibe Z. Temiz, Matthew J. McGinley, David A. McCormick, Robert C. Froemke","doi":"10.1038/s41593-024-01767-4","DOIUrl":"https://doi.org/10.1038/s41593-024-01767-4","url":null,"abstract":"<p>Perception can be refined by experience, up to certain limits. It is unclear whether perceptual limits are absolute or could be partially overcome via enhanced neuromodulation and/or plasticity. Recent studies suggest that peripheral nerve stimulation, specifically vagus nerve stimulation (VNS), can alter neural activity and augment experience-dependent plasticity, although little is known about central mechanisms recruited by VNS. Here we developed an auditory discrimination task for mice implanted with a VNS electrode. VNS applied during behavior gradually improved discrimination abilities beyond the level achieved by training alone. Two-photon imaging revealed VNS induced changes to auditory cortical responses and activated cortically projecting cholinergic axons. Anatomical and optogenetic experiments indicated that VNS can enhance task performance through activation of the central cholinergic system. These results highlight the importance of cholinergic modulation for the efficacy of VNS and may contribute to further refinement of VNS methodology for clinical conditions.</p>","PeriodicalId":19076,"journal":{"name":"Nature neuroscience","volume":null,"pages":null},"PeriodicalIF":25.0,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142234504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DOR activation in mature oligodendrocytes regulates α-ketoglutarate metabolism leading to enhanced remyelination in aged mice 激活成熟少突胶质细胞中的 DOR 可调节α-酮戊二酸代谢,从而增强老龄小鼠的髓鞘再形成能力
IF 25 1区 医学 Q1 NEUROSCIENCES Pub Date : 2024-09-12 DOI: 10.1038/s41593-024-01754-9
Guojiao Huang, Zhidan Li, Xuezhao Liu, Menglong Guan, Songlin Zhou, Xiaowen Zhong, Tao Zheng, Dazhuan Xin, Xiaosong Gu, Dezhi Mu, Yingkun Guo, Lin Zhang, Liguo Zhang, Q. Richard Lu, Xuelian He

The decreased ability of mature oligodendrocytes to produce myelin negatively affects remyelination in demyelinating diseases and aging, but the underlying mechanisms are incompletely understood. In the present study, we identify a mature oligodendrocyte-enriched transcriptional coregulator diabetes- and obesity-related gene (DOR)/tumor protein p53-inducible nuclear protein 2 (TP53INP2), downregulated in demyelinated lesions of donors with multiple sclerosis and in aged oligodendrocyte-lineage cells. Dor ablation in mice of both sexes results in defective myelinogenesis and remyelination. Genomic occupancy in oligodendrocytes and transcriptome profiling of the optic nerves of wild-type and Dor conditional knockout mice reveal that DOR and SOX10 co-occupy enhancers of critical myelinogenesis-associated genes including Prr18, encoding an oligodendrocyte-enriched, proline-rich factor. We show that DOR targets regulatory elements of genes responsible for α-ketoglutarate biosynthesis in mature oligodendrocytes and is essential for α-ketoglutarate production and lipid biosynthesis. Supplementation with α-ketoglutarate restores oligodendrocyte-maturation defects in Dor-deficient adult mice and improves remyelination after lysolecithin-induced demyelination and cognitive function in 17-month-old wild-type mice. Our data suggest that activation of α-ketoglutarate metabolism in mature oligodendrocytes can promote myelin production during demyelination and aging.

成熟少突胶质细胞产生髓鞘的能力下降会对脱髓鞘疾病和衰老中的再髓鞘化产生负面影响,但其潜在机制尚不完全清楚。在本研究中,我们发现了一个成熟少突胶质细胞富集的转录核心调节因子糖尿病和肥胖相关基因(DOR)/肿瘤蛋白 p53 诱导核蛋白 2(TP53INP2),它在多发性硬化症供体的脱髓鞘病变和衰老的少突胶质细胞系细胞中下调。小鼠(雌雄均可)的髓鞘消融导致髓鞘生成和再髓鞘化缺陷。野生型小鼠和 Dor 条件性基因敲除小鼠视神经中的少突胶质细胞基因组占位和转录组图谱分析表明,DOR 和 SOX10 共同占据了关键的髓鞘生成相关基因的增强子,包括 Prr18(编码一种富含脯氨酸的少突胶质细胞因子)。我们的研究表明,DOR靶向成熟少突胶质细胞中负责α-酮戊二酸生物合成的基因的调控元件,并且对α-酮戊二酸的产生和脂质的生物合成至关重要。补充α-酮戊二酸可恢复Dor缺陷成年小鼠少突胶质细胞成熟缺陷,并改善溶血卵磷脂诱导脱髓鞘后的再髓鞘化和17个月大野生型小鼠的认知功能。我们的数据表明,激活成熟少突胶质细胞中的α-酮戊二酸代谢可促进脱髓鞘和衰老过程中的髓鞘生成。
{"title":"DOR activation in mature oligodendrocytes regulates α-ketoglutarate metabolism leading to enhanced remyelination in aged mice","authors":"Guojiao Huang, Zhidan Li, Xuezhao Liu, Menglong Guan, Songlin Zhou, Xiaowen Zhong, Tao Zheng, Dazhuan Xin, Xiaosong Gu, Dezhi Mu, Yingkun Guo, Lin Zhang, Liguo Zhang, Q. Richard Lu, Xuelian He","doi":"10.1038/s41593-024-01754-9","DOIUrl":"https://doi.org/10.1038/s41593-024-01754-9","url":null,"abstract":"<p>The decreased ability of mature oligodendrocytes to produce myelin negatively affects remyelination in demyelinating diseases and aging, but the underlying mechanisms are incompletely understood. In the present study, we identify a mature oligodendrocyte-enriched transcriptional coregulator diabetes- and obesity-related gene (DOR)/tumor protein p53-inducible nuclear protein 2 (TP53INP2), downregulated in demyelinated lesions of donors with multiple sclerosis and in aged oligodendrocyte-lineage cells. <i>Dor</i> ablation in mice of both sexes results in defective myelinogenesis and remyelination. Genomic occupancy in oligodendrocytes and transcriptome profiling of the optic nerves of wild-type and <i>Dor</i> conditional knockout mice reveal that DOR and SOX10 co-occupy enhancers of critical myelinogenesis-associated genes including <i>Prr18</i>, encoding an oligodendrocyte-enriched, proline-rich factor. We show that DOR targets regulatory elements of genes responsible for α-ketoglutarate biosynthesis in mature oligodendrocytes and is essential for α-ketoglutarate production and lipid biosynthesis. Supplementation with α-ketoglutarate restores oligodendrocyte-maturation defects in <i>Dor</i>-deficient adult mice and improves remyelination after lysolecithin-induced demyelination and cognitive function in 17-month-old wild-type mice. Our data suggest that activation of α-ketoglutarate metabolism in mature oligodendrocytes can promote myelin production during demyelination and aging.</p>","PeriodicalId":19076,"journal":{"name":"Nature neuroscience","volume":null,"pages":null},"PeriodicalIF":25.0,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142170841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Myelin lipid metabolism can provide energy for starved axons 髓鞘脂质代谢可为饥饿的轴突提供能量
IF 25 1区 医学 Q1 NEUROSCIENCES Pub Date : 2024-09-12 DOI: 10.1038/s41593-024-01750-z
We reveal that lipid turnover in the myelin sheath generates a fatty acid pool in oligodendrocytes that can contribute to the energy balance of white matter tracts. We also demonstrate that when glucose levels are limiting, fatty acid metabolism can support glial cell survival and the basic functional integrity of myelinated axons.
我们揭示了髓鞘中的脂质周转会在少突胶质细胞中产生一个脂肪酸池,从而有助于白质束的能量平衡。我们还证明,当葡萄糖水平受到限制时,脂肪酸代谢可以支持胶质细胞的生存和有髓鞘轴突的基本功能完整性。
{"title":"Myelin lipid metabolism can provide energy for starved axons","authors":"","doi":"10.1038/s41593-024-01750-z","DOIUrl":"https://doi.org/10.1038/s41593-024-01750-z","url":null,"abstract":"We reveal that lipid turnover in the myelin sheath generates a fatty acid pool in oligodendrocytes that can contribute to the energy balance of white matter tracts. We also demonstrate that when glucose levels are limiting, fatty acid metabolism can support glial cell survival and the basic functional integrity of myelinated axons.","PeriodicalId":19076,"journal":{"name":"Nature neuroscience","volume":null,"pages":null},"PeriodicalIF":25.0,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142175023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
VEGF-A-mediated venous endothelial cell proliferation results in neoangiogenesis during neuroinflammation VEGF-A 介导的静脉内皮细胞增殖导致神经炎症期间的新血管生成
IF 25 1区 医学 Q1 NEUROSCIENCES Pub Date : 2024-09-10 DOI: 10.1038/s41593-024-01746-9
Sanjid Shahriar, Saptarshi Biswas, Kaitao Zhao, Uğur Akcan, Mary Claire Tuohy, Michael D. Glendinning, Ali Kurt, Charlotte R. Wayne, Grace Prochilo, Maxwell Z. Price, Heidi Stuhlmann, Rolf A. Brekken, Vilas Menon, Dritan Agalliu

Newly formed leaky vessels and blood–brain barrier (BBB) damage are present in demyelinating acute and chronic lesions in multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE). However, the endothelial cell subtypes and signaling pathways contributing to these leaky neovessels are unclear. Here, using single-cell transcriptional profiling and in vivo validation studies, we show that venous endothelial cells express neoangiogenesis gene signatures and show increased proliferation resulting in enlarged veins and higher venous coverage in acute and chronic EAE lesions in female adult mice. These changes correlate with the upregulation of vascular endothelial growth factor A (VEGF-A) signaling. We also confirmed increased expression of neoangiogenic markers in acute and chronic human MS lesions. Treatment with a VEGF-A blocking antibody diminishes the neoangiogenic transcriptomic signatures and vascular proliferation in female adult mice with EAE, but it does not restore BBB function or ameliorate EAE pathology. Our data demonstrate that venous endothelial cells contribute to neoangiogenesis in demyelinating neuroinflammatory conditions.

多发性硬化症(MS)和实验性自身免疫性脑脊髓炎(EAE)的脱髓鞘急慢性病变中存在新形成的渗漏血管和血脑屏障(BBB)损伤。然而,导致这些新血管渗漏的内皮细胞亚型和信号通路尚不清楚。在这里,我们利用单细胞转录谱分析和体内验证研究表明,在雌性成年小鼠的急性和慢性 EAE 病变中,静脉内皮细胞表达新血管生成基因特征,并显示出增殖增加,导致静脉扩大和静脉覆盖率升高。这些变化与血管内皮生长因子 A(VEGF-A)信号的上调有关。我们还证实了新血管生成标记物在急性和慢性人类多发性硬化病变中的表达增加。用 VEGF-A 阻断抗体治疗可减少 EAE 雌性成年小鼠的新血管生成转录组特征和血管增殖,但不能恢复 BBB 功能或改善 EAE 病理。我们的数据证明,静脉内皮细胞有助于脱髓鞘神经炎病症中的新血管生成。
{"title":"VEGF-A-mediated venous endothelial cell proliferation results in neoangiogenesis during neuroinflammation","authors":"Sanjid Shahriar, Saptarshi Biswas, Kaitao Zhao, Uğur Akcan, Mary Claire Tuohy, Michael D. Glendinning, Ali Kurt, Charlotte R. Wayne, Grace Prochilo, Maxwell Z. Price, Heidi Stuhlmann, Rolf A. Brekken, Vilas Menon, Dritan Agalliu","doi":"10.1038/s41593-024-01746-9","DOIUrl":"https://doi.org/10.1038/s41593-024-01746-9","url":null,"abstract":"<p>Newly formed leaky vessels and blood–brain barrier (BBB) damage are present in demyelinating acute and chronic lesions in multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE). However, the endothelial cell subtypes and signaling pathways contributing to these leaky neovessels are unclear. Here, using single-cell transcriptional profiling and in vivo validation studies, we show that venous endothelial cells express neoangiogenesis gene signatures and show increased proliferation resulting in enlarged veins and higher venous coverage in acute and chronic EAE lesions in female adult mice. These changes correlate with the upregulation of vascular endothelial growth factor A (VEGF-A) signaling. We also confirmed increased expression of neoangiogenic markers in acute and chronic human MS lesions. Treatment with a VEGF-A blocking antibody diminishes the neoangiogenic transcriptomic signatures and vascular proliferation in female adult mice with EAE, but it does not restore BBB function or ameliorate EAE pathology. Our data demonstrate that venous endothelial cells contribute to neoangiogenesis in demyelinating neuroinflammatory conditions.</p>","PeriodicalId":19076,"journal":{"name":"Nature neuroscience","volume":null,"pages":null},"PeriodicalIF":25.0,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142160457","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Nature neuroscience
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1