A sparse spectral method for fractional differential equations in one-spatial dimension

IF 1.7 3区 数学 Q2 MATHEMATICS, APPLIED Advances in Computational Mathematics Pub Date : 2024-07-10 DOI:10.1007/s10444-024-10164-1
Ioannis P. A. Papadopoulos, Sheehan Olver
{"title":"A sparse spectral method for fractional differential equations in one-spatial dimension","authors":"Ioannis P. A. Papadopoulos,&nbsp;Sheehan Olver","doi":"10.1007/s10444-024-10164-1","DOIUrl":null,"url":null,"abstract":"<div><p>We develop a sparse spectral method for a class of fractional differential equations, posed on <span>\\(\\mathbb {R}\\)</span>, in one dimension. These equations may include sqrt-Laplacian, Hilbert, derivative, and identity terms. The numerical method utilizes a basis consisting of weighted Chebyshev polynomials of the second kind in conjunction with their Hilbert transforms. The former functions are supported on <span>\\([-1,1]\\)</span> whereas the latter have global support. The global approximation space may contain different affine transformations of the basis, mapping <span>\\([-1,1]\\)</span> to other intervals. Remarkably, not only are the induced linear systems sparse, but the operator decouples across the different affine transformations. Hence, the solve reduces to solving <i>K</i> independent sparse linear systems of size <span>\\(\\mathcal {O}(n)\\times \\mathcal {O}(n)\\)</span>, with <span>\\(\\mathcal {O}(n)\\)</span> nonzero entries, where <i>K</i> is the number of different intervals and <i>n</i> is the highest polynomial degree contained in the sum space. This results in an <span>\\(\\mathcal {O}(n)\\)</span> complexity solve. Applications to fractional heat and wave equations are considered.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":"50 4","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10444-024-10164-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10444-024-10164-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We develop a sparse spectral method for a class of fractional differential equations, posed on \(\mathbb {R}\), in one dimension. These equations may include sqrt-Laplacian, Hilbert, derivative, and identity terms. The numerical method utilizes a basis consisting of weighted Chebyshev polynomials of the second kind in conjunction with their Hilbert transforms. The former functions are supported on \([-1,1]\) whereas the latter have global support. The global approximation space may contain different affine transformations of the basis, mapping \([-1,1]\) to other intervals. Remarkably, not only are the induced linear systems sparse, but the operator decouples across the different affine transformations. Hence, the solve reduces to solving K independent sparse linear systems of size \(\mathcal {O}(n)\times \mathcal {O}(n)\), with \(\mathcal {O}(n)\) nonzero entries, where K is the number of different intervals and n is the highest polynomial degree contained in the sum space. This results in an \(\mathcal {O}(n)\) complexity solve. Applications to fractional heat and wave equations are considered.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
单空间维分数微分方程的稀疏谱方法
我们为一类一维分数微分方程开发了一种稀疏谱方法,该方程是在\(\mathbb {R}\)上求解的。这些方程可能包括 sqrt-Laplacian、Hilbert、导数和特征项。数值方法使用的基础包括第二类加权切比雪夫多项式及其希尔伯特变换。前者在 \([-1,1]\) 上得到支持,而后者在全局上得到支持。全局近似空间可能包含不同的仿射变换基础,将 \([-1,1]\) 映射到其他区间。值得注意的是,不仅诱导线性系统稀疏,而且算子在不同的仿射变换中都是解耦的。因此,求解过程简化为求解大小为 \(\mathcal {O}(n)\times \mathcal {O}(n)\) 的 K 个独立稀疏线性系统,其中 \(\mathcal {O}(n)\) 是非零条目,K 是不同区间的数量,n 是和空间中包含的最高多项式度。这就导致了 \(\mathcal {O}(n)\) 复杂性求解。考虑了分数热方程和波方程的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.00
自引率
5.90%
发文量
68
审稿时长
3 months
期刊介绍: Advances in Computational Mathematics publishes high quality, accessible and original articles at the forefront of computational and applied mathematics, with a clear potential for impact across the sciences. The journal emphasizes three core areas: approximation theory and computational geometry; numerical analysis, modelling and simulation; imaging, signal processing and data analysis. This journal welcomes papers that are accessible to a broad audience in the mathematical sciences and that show either an advance in computational methodology or a novel scientific application area, or both. Methods papers should rely on rigorous analysis and/or convincing numerical studies.
期刊最新文献
Parametric model order reduction for a wildland fire model via the shifted POD-based deep learning method A scaling fractional asymptotical regularization method for linear inverse problems A difference finite element method based on nonconforming finite element methods for 3D elliptic problems An all-frequency stable integral system for Maxwell’s equations in 3-D penetrable media: continuous and discrete model analysis A reduced-order model for advection-dominated problems based on the Radon Cumulative Distribution Transform
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1