A scaling fractional asymptotical regularization method for linear inverse problems

IF 1.7 3区 数学 Q2 MATHEMATICS, APPLIED Advances in Computational Mathematics Pub Date : 2025-01-31 DOI:10.1007/s10444-025-10222-2
Lele Yuan, Ye Zhang
{"title":"A scaling fractional asymptotical regularization method for linear inverse problems","authors":"Lele Yuan,&nbsp;Ye Zhang","doi":"10.1007/s10444-025-10222-2","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, we propose a Scaling Fractional Asymptotical Regularization (S-FAR) method for solving linear ill-posed operator equations in Hilbert spaces, inspired by the work of (2019 <i>Fract. Calc. Appl. Anal.</i> 22(3) 699-721). Our method is incorporated into the general framework of linear regularization and demonstrates that, under both Hölder and logarithmic source conditions, the S-FAR with fractional orders in the range (1, 2] offers accelerated convergence compared to comparable order optimal regularization methods. Additionally, we introduce a de-biasing strategy that significantly outperforms previous approaches, alongside a thresholding technique for achieving sparse solutions, which greatly enhances the accuracy of approximations. A variety of numerical examples, including one- and two-dimensional model problems, are provided to validate the accuracy and acceleration benefits of the FAR method.</p></div>","PeriodicalId":50869,"journal":{"name":"Advances in Computational Mathematics","volume":"51 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Computational Mathematics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10444-025-10222-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we propose a Scaling Fractional Asymptotical Regularization (S-FAR) method for solving linear ill-posed operator equations in Hilbert spaces, inspired by the work of (2019 Fract. Calc. Appl. Anal. 22(3) 699-721). Our method is incorporated into the general framework of linear regularization and demonstrates that, under both Hölder and logarithmic source conditions, the S-FAR with fractional orders in the range (1, 2] offers accelerated convergence compared to comparable order optimal regularization methods. Additionally, we introduce a de-biasing strategy that significantly outperforms previous approaches, alongside a thresholding technique for achieving sparse solutions, which greatly enhances the accuracy of approximations. A variety of numerical examples, including one- and two-dimensional model problems, are provided to validate the accuracy and acceleration benefits of the FAR method.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.00
自引率
5.90%
发文量
68
审稿时长
3 months
期刊介绍: Advances in Computational Mathematics publishes high quality, accessible and original articles at the forefront of computational and applied mathematics, with a clear potential for impact across the sciences. The journal emphasizes three core areas: approximation theory and computational geometry; numerical analysis, modelling and simulation; imaging, signal processing and data analysis. This journal welcomes papers that are accessible to a broad audience in the mathematical sciences and that show either an advance in computational methodology or a novel scientific application area, or both. Methods papers should rely on rigorous analysis and/or convincing numerical studies.
期刊最新文献
Parametric model order reduction for a wildland fire model via the shifted POD-based deep learning method A scaling fractional asymptotical regularization method for linear inverse problems A difference finite element method based on nonconforming finite element methods for 3D elliptic problems An all-frequency stable integral system for Maxwell’s equations in 3-D penetrable media: continuous and discrete model analysis A reduced-order model for advection-dominated problems based on the Radon Cumulative Distribution Transform
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1