Pasquale Cavaliere, Behzad Sadeghi, Aleksandra Laska, Damian Koszelow
{"title":"TiO2 and Reducing Gas: Intricate Relationships to Direct Reduction of Iron Oxide Pellets","authors":"Pasquale Cavaliere, Behzad Sadeghi, Aleksandra Laska, Damian Koszelow","doi":"10.1007/s11663-024-03168-1","DOIUrl":null,"url":null,"abstract":"<p>In response to the imperative for sustainable iron production with reduced CO<sub>2</sub> emissions, this study delves into the intricate role of TiO<sub>2</sub> in the direct reduction of iron oxide pellets. The TiO<sub>2</sub>-dependent reducibility of iron oxide pellets utilizing H<sub>2</sub> and CO gas across varied temperatures and gas compositions is thoroughly investigated. Our findings unveil the nuanced nature of the TiO<sub>2</sub> effect, underscored by its concentration-dependent behavior, revealing an optimal range between 1 and 1.5 pct TiO<sub>2</sub>, where a neutral or positive impact on reduction kinetics and diffusion coefficient is observed. Notably, the synergistic interplay of CO and H<sub>2</sub> at 1000 °C emerges as particularly efficacious, suggesting complementary effects on the reduction process. The introduction of H<sub>2</sub> into the reducing atmosphere regulated by CO not only extends the transition range but also markedly expedites the rate of reduction. Furthermore, our study highlights the temperature sensitivity of the TiO<sub>2</sub> effect, with higher TiO<sub>2</sub> content correlating with prolonged reduction time in a 100 pct H<sub>2</sub> atmosphere at 900 °C. In a 100 pct H<sub>2</sub> atmosphere, the non-contributory role of TiO<sub>2</sub> stems from the water-gas shift reaction. Conversely, introducing H<sub>2</sub> into a CO-controlled reducing atmosphere with TiO<sub>2</sub> enhances the transition range and expedites the reduction rate. Additionally, our findings underscore the role of total iron content, revealing a direct correlation with the reduction process.</p>","PeriodicalId":18613,"journal":{"name":"Metallurgical and Materials Transactions B","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallurgical and Materials Transactions B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11663-024-03168-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In response to the imperative for sustainable iron production with reduced CO2 emissions, this study delves into the intricate role of TiO2 in the direct reduction of iron oxide pellets. The TiO2-dependent reducibility of iron oxide pellets utilizing H2 and CO gas across varied temperatures and gas compositions is thoroughly investigated. Our findings unveil the nuanced nature of the TiO2 effect, underscored by its concentration-dependent behavior, revealing an optimal range between 1 and 1.5 pct TiO2, where a neutral or positive impact on reduction kinetics and diffusion coefficient is observed. Notably, the synergistic interplay of CO and H2 at 1000 °C emerges as particularly efficacious, suggesting complementary effects on the reduction process. The introduction of H2 into the reducing atmosphere regulated by CO not only extends the transition range but also markedly expedites the rate of reduction. Furthermore, our study highlights the temperature sensitivity of the TiO2 effect, with higher TiO2 content correlating with prolonged reduction time in a 100 pct H2 atmosphere at 900 °C. In a 100 pct H2 atmosphere, the non-contributory role of TiO2 stems from the water-gas shift reaction. Conversely, introducing H2 into a CO-controlled reducing atmosphere with TiO2 enhances the transition range and expedites the reduction rate. Additionally, our findings underscore the role of total iron content, revealing a direct correlation with the reduction process.