Deciphering chemical ordering in High Entropy Materials: A machine learning-accelerated high-throughput cluster expansion approach

IF 8.3 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Acta Materialia Pub Date : 2024-06-27 DOI:10.1016/j.actamat.2024.120137
Guillermo Vazquez , Daniel Sauceda , Raymundo Arróyave
{"title":"Deciphering chemical ordering in High Entropy Materials: A machine learning-accelerated high-throughput cluster expansion approach","authors":"Guillermo Vazquez ,&nbsp;Daniel Sauceda ,&nbsp;Raymundo Arróyave","doi":"10.1016/j.actamat.2024.120137","DOIUrl":null,"url":null,"abstract":"<div><p>The Cluster Expansion (CE) Method encounters significant computational challenges in multicomponent systems due to the computational expense of generating training data through density functional theory (DFT) calculations. This work aims to refine the cluster and structure selection processes to mitigate these challenges. We introduce a novel method that significantly reduces the computational load associated with the calculation of fitting parameters. This method employs a Graph Neural Network (GNN) model, leveraging the M3GNet network, which is trained using a select subset of DFT calculations at each ionic step. The trained surrogate model excels in predicting the volume and energy of the final structure for a relaxation run. By employing this model, we sample thousands of structures and fit a CE model to the energies of these GNN-relaxed structures. This approach, utilizing a large training dataset, effectively reduces the risk of overfitting, yielding a CE model with a root-mean-square error (RMSE) below 10 meV/atom. We validate our method’s effectiveness in two test cases: the (Ti, Cr, Zr, Mo, Hf, Ta)B<span><math><msub><mrow></mrow><mrow><mn>2</mn></mrow></msub></math></span> diboride system and the Refractory High-Entropy Alloy (HEA) AlTiZrNbHfTa system. Our findings demonstrate the significant advantages of integrating a GNN model, specifically the M3GNet network, with CE methods for the efficient predictive analysis of chemical ordering in High Entropy Materials. The accelerating capabilities of the hybrid ML-CE approach to investigate the evolution of Short Range Ordering (SRO) in a large number of stoichiometric systems. Finally, we show how it is possible to correlate the strength of chemical ordering to easily accessible alloy parameters.</p></div>","PeriodicalId":238,"journal":{"name":"Acta Materialia","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Materialia","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359645424004889","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The Cluster Expansion (CE) Method encounters significant computational challenges in multicomponent systems due to the computational expense of generating training data through density functional theory (DFT) calculations. This work aims to refine the cluster and structure selection processes to mitigate these challenges. We introduce a novel method that significantly reduces the computational load associated with the calculation of fitting parameters. This method employs a Graph Neural Network (GNN) model, leveraging the M3GNet network, which is trained using a select subset of DFT calculations at each ionic step. The trained surrogate model excels in predicting the volume and energy of the final structure for a relaxation run. By employing this model, we sample thousands of structures and fit a CE model to the energies of these GNN-relaxed structures. This approach, utilizing a large training dataset, effectively reduces the risk of overfitting, yielding a CE model with a root-mean-square error (RMSE) below 10 meV/atom. We validate our method’s effectiveness in two test cases: the (Ti, Cr, Zr, Mo, Hf, Ta)B2 diboride system and the Refractory High-Entropy Alloy (HEA) AlTiZrNbHfTa system. Our findings demonstrate the significant advantages of integrating a GNN model, specifically the M3GNet network, with CE methods for the efficient predictive analysis of chemical ordering in High Entropy Materials. The accelerating capabilities of the hybrid ML-CE approach to investigate the evolution of Short Range Ordering (SRO) in a large number of stoichiometric systems. Finally, we show how it is possible to correlate the strength of chemical ordering to easily accessible alloy parameters.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
解密高熵材料中的化学排序:机器学习加速的高通量集群扩展方法
由于通过密度泛函理论(DFT)计算生成训练数据的计算费用高昂,簇扩展(CE)方法在多组分系统中遇到了巨大的计算挑战。这项工作旨在改进聚类和结构选择过程,以减轻这些挑战。我们引入了一种新方法,可显著降低与拟合参数计算相关的计算负荷。该方法采用图形神经网络 (GNN) 模型,利用 M3GNet 网络,在每个离子步骤中使用选定的 DFT 计算子集对其进行训练。经过训练的代用模型在预测弛豫运行的最终结构的体积和能量方面表现出色。通过使用该模型,我们对数千种结构进行了采样,并根据这些 GNN 松弛结构的能量拟合了 CE 模型。这种方法利用了大量的训练数据集,有效地降低了过拟合的风险,使 CE 模型的均方根误差 (RMSE) 低于 10 meV/原子。我们在两个测试案例中验证了我们方法的有效性:(Ti, Cr, Zr, Mo, Hf, Ta)B 二硼化物体系和难熔高熵合金 (HEA) AlTiZrNbHfTa 体系。我们的研究结果表明,将 GNN 模型(特别是 M3GNet 网络)与 CE 方法相结合,对高熵材料中的化学排序进行高效预测分析具有显著优势。ML-CE 混合方法可加速研究大量化学计量体系中短程有序(SRO)的演化。最后,我们展示了如何将化学有序的强度与容易获得的合金参数相关联。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Acta Materialia
Acta Materialia 工程技术-材料科学:综合
CiteScore
16.10
自引率
8.50%
发文量
801
审稿时长
53 days
期刊介绍: Acta Materialia serves as a platform for publishing full-length, original papers and commissioned overviews that contribute to a profound understanding of the correlation between the processing, structure, and properties of inorganic materials. The journal seeks papers with high impact potential or those that significantly propel the field forward. The scope includes the atomic and molecular arrangements, chemical and electronic structures, and microstructure of materials, focusing on their mechanical or functional behavior across all length scales, including nanostructures.
期刊最新文献
Neural network interatomic potentials for open surface nano-mechanics applications Hydrogen penetration into the NiTi superelastic alloy investigated in-situ by synchrotron diffraction experiments Interstitial Engineering Enabling Superior Mechanical Properties of Nitrogen-Supersaturated Fe50Mn30Co10Cr10 High-Entropy Alloys Investigations on the crystallographic stacking disordering and properties of novel Ga-containing in-plane chemically ordered (Cr2/3R1/3)2GaC (R = Y, Tb - Lu) i-MAX phases In-situ observation of variant pair formation in bainite of low carbon steel by digital holographic microscopy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1