Randomized approximation of summable sequences — adaptive and non-adaptive

IF 0.9 3区 数学 Q2 MATHEMATICS Journal of Approximation Theory Pub Date : 2024-06-12 DOI:10.1016/j.jat.2024.106056
Robert J. Kunsch , Erich Novak , Marcin Wnuk
{"title":"Randomized approximation of summable sequences — adaptive and non-adaptive","authors":"Robert J. Kunsch ,&nbsp;Erich Novak ,&nbsp;Marcin Wnuk","doi":"10.1016/j.jat.2024.106056","DOIUrl":null,"url":null,"abstract":"<div><p>We prove lower bounds for the randomized approximation of the embedding <span><math><mrow><msubsup><mrow><mi>ℓ</mi></mrow><mrow><mn>1</mn></mrow><mrow><mi>m</mi></mrow></msubsup><mo>↪</mo><msubsup><mrow><mi>ℓ</mi></mrow><mrow><mi>∞</mi></mrow><mrow><mi>m</mi></mrow></msubsup></mrow></math></span> based on algorithms that use arbitrary linear (hence non-adaptive) information provided by a (randomized) measurement matrix <span><math><mrow><mi>N</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>n</mi><mo>×</mo><mi>m</mi></mrow></msup></mrow></math></span>. These lower bounds reflect the increasing difficulty of the problem for <span><math><mrow><mi>m</mi><mo>→</mo><mi>∞</mi></mrow></math></span>, namely, a term <span><math><msqrt><mrow><mo>log</mo><mi>m</mi></mrow></msqrt></math></span> in the complexity <span><math><mi>n</mi></math></span>. This result implies that non-compact operators between arbitrary Banach spaces are not approximable using non-adaptive Monte Carlo methods. We also compare these lower bounds for non-adaptive methods with upper bounds based on adaptive, randomized methods for recovery for which the complexity <span><math><mi>n</mi></math></span> only exhibits a <span><math><mrow><mo>(</mo><mo>log</mo><mo>log</mo><mi>m</mi><mo>)</mo></mrow></math></span>-dependence. In doing so we give an example of linear problems where the error for adaptive vs. non-adaptive Monte Carlo methods shows a gap of order <span><math><mrow><msup><mrow><mi>n</mi></mrow><mrow><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup><msup><mrow><mrow><mo>(</mo><mo>log</mo><mi>n</mi><mo>)</mo></mrow></mrow><mrow><mo>−</mo><mn>1</mn><mo>/</mo><mn>2</mn></mrow></msup></mrow></math></span>.</p></div>","PeriodicalId":54878,"journal":{"name":"Journal of Approximation Theory","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Approximation Theory","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002190452400042X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We prove lower bounds for the randomized approximation of the embedding 1mm based on algorithms that use arbitrary linear (hence non-adaptive) information provided by a (randomized) measurement matrix NRn×m. These lower bounds reflect the increasing difficulty of the problem for m, namely, a term logm in the complexity n. This result implies that non-compact operators between arbitrary Banach spaces are not approximable using non-adaptive Monte Carlo methods. We also compare these lower bounds for non-adaptive methods with upper bounds based on adaptive, randomized methods for recovery for which the complexity n only exhibits a (loglogm)-dependence. In doing so we give an example of linear problems where the error for adaptive vs. non-adaptive Monte Carlo methods shows a gap of order n1/2(logn)1/2.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
可求和序列的随机逼近--适应性和非适应性
我们证明了基于使用由(随机)测量矩阵提供的任意线性(因此非适应性)信息的算法的嵌入随机近似的下限。这些下界反映了问题难度的增加,即复杂度中的一个项......。这一结果意味着,任意巴拿赫空间之间的非紧凑算子无法用非自适应蒙特卡洛方法逼近。我们还将这些非自适应方法的下界与基于自适应随机方法的上界进行了比较,对于后者,复杂度只表现出-依赖关系。为此,我们举了一个线性问题的例子,在这些问题中,自适应蒙特卡洛方法与非自适应蒙特卡洛方法的误差显示出数量级为.的差距。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.90
自引率
11.10%
发文量
55
审稿时长
6-12 weeks
期刊介绍: The Journal of Approximation Theory is devoted to advances in pure and applied approximation theory and related areas. These areas include, among others: • Classical approximation • Abstract approximation • Constructive approximation • Degree of approximation • Fourier expansions • Interpolation of operators • General orthogonal systems • Interpolation and quadratures • Multivariate approximation • Orthogonal polynomials • Padé approximation • Rational approximation • Spline functions of one and several variables • Approximation by radial basis functions in Euclidean spaces, on spheres, and on more general manifolds • Special functions with strong connections to classical harmonic analysis, orthogonal polynomial, and approximation theory (as opposed to combinatorics, number theory, representation theory, generating functions, formal theory, and so forth) • Approximation theoretic aspects of real or complex function theory, function theory, difference or differential equations, function spaces, or harmonic analysis • Wavelet Theory and its applications in signal and image processing, and in differential equations with special emphasis on connections between wavelet theory and elements of approximation theory (such as approximation orders, Besov and Sobolev spaces, and so forth) • Gabor (Weyl-Heisenberg) expansions and sampling theory.
期刊最新文献
Optimization-aided construction of multivariate Chebyshev polynomials In search of a higher Bochner theorem Positive orthogonalizing weights on the unit circle for the generalized Bessel polynomials Editorial Board On the representability of a continuous multivariate function by sums of ridge functions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1