Multifunction integration within magnetic CNT-bridged MXene/CoNi based phase change materials

IF 42.9 Q1 ELECTROCHEMISTRY eScience Pub Date : 2024-06-22 DOI:10.1016/j.esci.2024.100292
Yan Gao, Xiao Chen, Xu Jin, Chenjun Zhang, Xi Zhang, Xiaodan Liu, Yinhui Li, Yang Li, Jinjie Lin, Hongyi Gao, Ge Wang
{"title":"Multifunction integration within magnetic CNT-bridged MXene/CoNi based phase change materials","authors":"Yan Gao, Xiao Chen, Xu Jin, Chenjun Zhang, Xi Zhang, Xiaodan Liu, Yinhui Li, Yang Li, Jinjie Lin, Hongyi Gao, Ge Wang","doi":"10.1016/j.esci.2024.100292","DOIUrl":null,"url":null,"abstract":"Developing advanced nanocomposite phase change materials (PCMs) integrating zero-energy thermal management, microwave absorption, photothermal therapy and electrical signal detection can promote the leapfrog development of flexible wearable electronic devices. For this goal, we propose a multidimensional collaborative strategy combining two-dimensional (2D) MXene nanosheets with metal-organic framework-derived one-dimensional (1D) carbon nanotubes (CNTs) and zero-dimensional (0D) metal nanoparticles. After encapsulating paraffin wax (PW) in three-dimensional (3D) networked multidimensional MXene/CoNi–C, the resulting composite PCMs exhibit excellent thermal energy storage capacity and long-term thermally reliable stability. Benefiting from the synergistically enhanced photothermal effects of CNTs, Co/Ni nanoparticles and MXene, PW@MXene/CoNi–C can capture photons efficiently and transfer phonons quickly, yielding an ultrahigh photothermal conversion and storage efficiency of 97.5%. Additionally, PW@MXene/CoNi–C composite PCMs exhibit high microwave absorption with a minimum reflection loss of −49.3 ​dB at 8.03 ​GHz in heat-related electronic application scenarios. More attractively, the corresponding flexible phase change film can simultaneously achieve thermal management and electromagnetic shielding of electronic devices, as well as photothermal therapy and electrical signal detection for individuals. This functional integration design provides an important reference for developing advanced flexible multifunctional wearable materials and devices.","PeriodicalId":100489,"journal":{"name":"eScience","volume":null,"pages":null},"PeriodicalIF":42.9000,"publicationDate":"2024-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"eScience","FirstCategoryId":"0","ListUrlMain":"https://doi.org/10.1016/j.esci.2024.100292","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Developing advanced nanocomposite phase change materials (PCMs) integrating zero-energy thermal management, microwave absorption, photothermal therapy and electrical signal detection can promote the leapfrog development of flexible wearable electronic devices. For this goal, we propose a multidimensional collaborative strategy combining two-dimensional (2D) MXene nanosheets with metal-organic framework-derived one-dimensional (1D) carbon nanotubes (CNTs) and zero-dimensional (0D) metal nanoparticles. After encapsulating paraffin wax (PW) in three-dimensional (3D) networked multidimensional MXene/CoNi–C, the resulting composite PCMs exhibit excellent thermal energy storage capacity and long-term thermally reliable stability. Benefiting from the synergistically enhanced photothermal effects of CNTs, Co/Ni nanoparticles and MXene, PW@MXene/CoNi–C can capture photons efficiently and transfer phonons quickly, yielding an ultrahigh photothermal conversion and storage efficiency of 97.5%. Additionally, PW@MXene/CoNi–C composite PCMs exhibit high microwave absorption with a minimum reflection loss of −49.3 ​dB at 8.03 ​GHz in heat-related electronic application scenarios. More attractively, the corresponding flexible phase change film can simultaneously achieve thermal management and electromagnetic shielding of electronic devices, as well as photothermal therapy and electrical signal detection for individuals. This functional integration design provides an important reference for developing advanced flexible multifunctional wearable materials and devices.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
磁性 CNT 桥接 MXene/CoNi 相变材料的多功能集成
开发集零能热管理、微波吸收、光热治疗和电信号检测于一体的先进纳米复合相变材料(PCMs)可促进柔性可穿戴电子设备的跨越式发展。为此,我们提出了一种多维合作策略,将二维(2D)MXene 纳米片与源自金属有机框架的一维(1D)碳纳米管(CNTs)和零维(0D)金属纳米颗粒相结合。将石蜡(PW)封装在三维(3D)网络状多维 MXene/CoNi-C 中后,得到的复合 PCM 具有出色的热能储存能力和长期可靠的热稳定性。得益于 CNTs、Co/Ni 纳米粒子和 MXene 协同增强的光热效应,PW@MXene/CoNi-C 可高效捕获光子并快速传递声子,从而产生高达 97.5% 的超高光热转换和存储效率。此外,PW@MXene/CoNi-C 复合 PCM 还具有很高的微波吸收能力,在与热有关的电子应用场景中,8.03 GHz 时的最小反射损耗为 -49.3 dB。更具吸引力的是,相应的柔性相变薄膜可同时实现电子设备的热管理和电磁屏蔽,以及光热治疗和个人电信号检测。这种功能集成设计为开发先进的柔性多功能可穿戴材料和设备提供了重要参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
33.70
自引率
0.00%
发文量
0
期刊最新文献
Understanding synergistic catalysis on Pt–Cu diatomic sites via operando X-ray absorption spectroscopy in sulfur redox reactions Characteristics, materials, and performance of Ru-containing oxide cathode materials for rechargeable batteries Versatile carbon-based materials from biomass for advanced electrochemical energy storage systems Recent advances in flexible self-oscillating actuators Anodes for low-temperature rechargeable batteries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1