Construction of advanced Nb9VO25 electrode material by introducing graphene quantum dot for high energy supercapacitors with exceptionally high diffusive capacitance

IF 5.9 3区 工程技术 Q1 CHEMISTRY, MULTIDISCIPLINARY Journal of Industrial and Engineering Chemistry Pub Date : 2024-06-27 DOI:10.1016/j.jiec.2024.06.036
Li Xiaoshan, Li Ruiyi, Li Zaijun, Yang Yongqiang, Liu Xiaohao
{"title":"Construction of advanced Nb9VO25 electrode material by introducing graphene quantum dot for high energy supercapacitors with exceptionally high diffusive capacitance","authors":"Li Xiaoshan, Li Ruiyi, Li Zaijun, Yang Yongqiang, Liu Xiaohao","doi":"10.1016/j.jiec.2024.06.036","DOIUrl":null,"url":null,"abstract":"Unreasonable tunnel structure and low intrinsic conductivity limit practical applications of niobium oxide in high-performance supercapacitors. The study reports the construction of NbVO electrode material via coordination of Nb(V) and V(V) with histidine and serine-functionalized and boron-doped graphene quantum dot (HSBGQD) and subsequent annealing. The introduction of HSBGQD and rambutan peel leads to formation of small NbVO nanocrystal and low valent Nb and V species. The combination of small size and more reasonable tunnel structure accelerates the ion diffusion. The Nb(IV) and V(IV) double doping optimizes the tunnel structure, narrows the bandgap and creates new pathways for high-speed electron transfer. The integration of defect engineering with graphene surface modification enhance the intrinsic conductivity. The NbVO electrode shows exceptionally high specific capacitance of 2925.3 F/g, which is more than 142 times that of NbO. The symmetrical supercapacitor with NbVO electrodes and PVA/LiSO gel electrolyte offers high specific capacitance (263 F/g at 1 A/g), high-rage capacity (138 F/g at 50 A/g), cycling stability (capacitance retention of 95.2 % after 10,000-cycle), energy density (146 W h Kg at 996 W Kg and 77 W h Kg at 50181 W kg) and broad application prospect in wearable electronic devices.","PeriodicalId":363,"journal":{"name":"Journal of Industrial and Engineering Chemistry","volume":"25 1","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial and Engineering Chemistry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.jiec.2024.06.036","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Unreasonable tunnel structure and low intrinsic conductivity limit practical applications of niobium oxide in high-performance supercapacitors. The study reports the construction of NbVO electrode material via coordination of Nb(V) and V(V) with histidine and serine-functionalized and boron-doped graphene quantum dot (HSBGQD) and subsequent annealing. The introduction of HSBGQD and rambutan peel leads to formation of small NbVO nanocrystal and low valent Nb and V species. The combination of small size and more reasonable tunnel structure accelerates the ion diffusion. The Nb(IV) and V(IV) double doping optimizes the tunnel structure, narrows the bandgap and creates new pathways for high-speed electron transfer. The integration of defect engineering with graphene surface modification enhance the intrinsic conductivity. The NbVO electrode shows exceptionally high specific capacitance of 2925.3 F/g, which is more than 142 times that of NbO. The symmetrical supercapacitor with NbVO electrodes and PVA/LiSO gel electrolyte offers high specific capacitance (263 F/g at 1 A/g), high-rage capacity (138 F/g at 50 A/g), cycling stability (capacitance retention of 95.2 % after 10,000-cycle), energy density (146 W h Kg at 996 W Kg and 77 W h Kg at 50181 W kg) and broad application prospect in wearable electronic devices.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过引入石墨烯量子点构建先进的 Nb9VO25 电极材料,用于具有超高扩散电容的高能量超级电容器
不合理的隧道结构和较低的本征电导率限制了氧化铌在高性能超级电容器中的实际应用。该研究报告了通过组氨酸和丝氨酸功能化及掺硼石墨烯量子点(HSBGQD)配位并随后进行退火处理来构建氧化铌电极材料。通过引入 HSBGQD 和红毛丹皮,形成了小尺寸的 NbVO 纳米晶体和低价的 Nb 和 V 物种。小尺寸与更合理的隧道结构相结合,加速了离子的扩散。铌(IV)和钒(IV)的双重掺杂优化了隧道结构,缩小了带隙,并为高速电子传输创造了新的途径。缺陷工程与石墨烯表面改性的结合增强了内在导电性。NbVO 电极的比电容高达 2925.3 F/g,是 NbO 的 142 倍以上。采用 NbVO 电极和 PVA/LiSO 凝胶电解质的对称超级电容器具有高比电容(1 A/g 时为 263 F/g)、高电容(50 A/g 时为 138 F/g)、循环稳定性(10,000 次循环后电容保持率为 95.2%)、能量密度(996 W Kg 时为 146 W h Kg,50181 W kg 时为 77 W h Kg),在可穿戴电子设备中具有广阔的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.40
自引率
6.60%
发文量
639
审稿时长
29 days
期刊介绍: Journal of Industrial and Engineering Chemistry is published monthly in English by the Korean Society of Industrial and Engineering Chemistry. JIEC brings together multidisciplinary interests in one journal and is to disseminate information on all aspects of research and development in industrial and engineering chemistry. Contributions in the form of research articles, short communications, notes and reviews are considered for publication. The editors welcome original contributions that have not been and are not to be published elsewhere. Instruction to authors and a manuscript submissions form are printed at the end of each issue. Bulk reprints of individual articles can be ordered. This publication is partially supported by Korea Research Foundation and the Korean Federation of Science and Technology Societies.
期刊最新文献
Editorial Board Mitochondria-targeted NIR molecular probe for detecting viscosity of gland damage and SO2 in actual samples Advanced Z-scheme H-g-C3N4/Bi2S3 nanocomposites: Boosting photocatalytic degradation of antibiotics under visible light exposure Sodium-doped LiFe0.5Mn0.5PO4 using sodium gluconate as both reducing agent and a doping source in Lithium-ion batteries Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1