Yongjun Son, Jihyeon Min, Indong Jang, Jiyoon Park, Chongku Yi, Woojun Park
{"title":"Enhanced mechanical properties of living and regenerative building materials by filamentous Leptolyngbya boryana","authors":"Yongjun Son, Jihyeon Min, Indong Jang, Jiyoon Park, Chongku Yi, Woojun Park","doi":"10.1016/j.xcrp.2024.102098","DOIUrl":null,"url":null,"abstract":"<p>Cement-free and cyanobacteria-based living building materials (LBMs) can be manufactured using microbially induced calcium carbonate (CaCO<sub>3</sub>) precipitation (MICP) technology, which is regarded as eco-friendly because of the absence of CO<sub>2</sub> gas emissions during the manufacturing process. Here, we report that photosynthetic and filamentous cyanobacterium <em>Leptolyngbya boryana</em> GGD can precipitate substantial amounts of CaCO<sub>3</sub> with biofilm formation in our optimized medium. Compared to coccoid cells, filamentous cells have an extensive surface area that can efficiently agglomerate the formation of granular materials and fill the void spaces by forming bridging microstructures along with precipitated CaCO<sub>3</sub> in LBMs, which can enhance the mechanical properties of LBMs. Regenerative LBMs can possibly be reconstructed using old materials from parent LBMs without the addition of GGD strain cells. The physicochemical properties of the filamentous GGD strain hold promise as valuable components for maintaining the structural integrity of LBMs.</p>","PeriodicalId":9703,"journal":{"name":"Cell Reports Physical Science","volume":null,"pages":null},"PeriodicalIF":7.9000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Physical Science","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1016/j.xcrp.2024.102098","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Cement-free and cyanobacteria-based living building materials (LBMs) can be manufactured using microbially induced calcium carbonate (CaCO3) precipitation (MICP) technology, which is regarded as eco-friendly because of the absence of CO2 gas emissions during the manufacturing process. Here, we report that photosynthetic and filamentous cyanobacterium Leptolyngbya boryana GGD can precipitate substantial amounts of CaCO3 with biofilm formation in our optimized medium. Compared to coccoid cells, filamentous cells have an extensive surface area that can efficiently agglomerate the formation of granular materials and fill the void spaces by forming bridging microstructures along with precipitated CaCO3 in LBMs, which can enhance the mechanical properties of LBMs. Regenerative LBMs can possibly be reconstructed using old materials from parent LBMs without the addition of GGD strain cells. The physicochemical properties of the filamentous GGD strain hold promise as valuable components for maintaining the structural integrity of LBMs.
期刊介绍:
Cell Reports Physical Science, a premium open-access journal from Cell Press, features high-quality, cutting-edge research spanning the physical sciences. It serves as an open forum fostering collaboration among physical scientists while championing open science principles. Published works must signify significant advancements in fundamental insight or technological applications within fields such as chemistry, physics, materials science, energy science, engineering, and related interdisciplinary studies. In addition to longer articles, the journal considers impactful short-form reports and short reviews covering recent literature in emerging fields. Continually adapting to the evolving open science landscape, the journal reviews its policies to align with community consensus and best practices.