{"title":"Plasma jet printing of silver patterns on flexible substrates: Conductive properties and control mechanism","authors":"Jiaqing Xue, Deping Yu, Yingxin Zhao, Xufeng Yue, Jianing Cai, Peng Zhang, Keming Peng","doi":"10.1002/ppap.202400110","DOIUrl":null,"url":null,"abstract":"Plasma jet printing, which does not require preprocessing and postprocessing, is a promising technology for manufacturing flexible electronics. The conductive properties should be confirmed to ensure the performance of the flexible electronics. In this study, the conductive properties and control mechanism of plasma jet‐printed silver patterns were investigated. Analyses show that high‐energy particles in the plasma decomposed organic solvents and induced the interconnection between silver nanoparticles. The plasma jet‐printed silver patterns had high uniformity in vertical spatial distribution. The dense packing of the silver patterns was achieved by increasing the number of printed layers, reducing the print speed, and increasing the focusing ratio. Oxidation of the silver nanoparticles was reduced and the conductivity was improved by increasing the focusing ratio.","PeriodicalId":20135,"journal":{"name":"Plasma Processes and Polymers","volume":"83 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Processes and Polymers","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1002/ppap.202400110","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Plasma jet printing, which does not require preprocessing and postprocessing, is a promising technology for manufacturing flexible electronics. The conductive properties should be confirmed to ensure the performance of the flexible electronics. In this study, the conductive properties and control mechanism of plasma jet‐printed silver patterns were investigated. Analyses show that high‐energy particles in the plasma decomposed organic solvents and induced the interconnection between silver nanoparticles. The plasma jet‐printed silver patterns had high uniformity in vertical spatial distribution. The dense packing of the silver patterns was achieved by increasing the number of printed layers, reducing the print speed, and increasing the focusing ratio. Oxidation of the silver nanoparticles was reduced and the conductivity was improved by increasing the focusing ratio.
期刊介绍:
Plasma Processes & Polymers focuses on the interdisciplinary field of low temperature plasma science, covering both experimental and theoretical aspects of fundamental and applied research in materials science, physics, chemistry and engineering in the area of plasma sources and plasma-based treatments.