Harnessing synergies: Gold-polyaniline based symmetric supercapacitor for low-frequency waveform generation

IF 4 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Synthetic Metals Pub Date : 2024-07-05 DOI:10.1016/j.synthmet.2024.117693
Pooja Kumari , Sarit K. Ghosh , Venkata K. Perla , Chandan Saha , Harishchandra Singh , Kaushik Mallick
{"title":"Harnessing synergies: Gold-polyaniline based symmetric supercapacitor for low-frequency waveform generation","authors":"Pooja Kumari ,&nbsp;Sarit K. Ghosh ,&nbsp;Venkata K. Perla ,&nbsp;Chandan Saha ,&nbsp;Harishchandra Singh ,&nbsp;Kaushik Mallick","doi":"10.1016/j.synthmet.2024.117693","DOIUrl":null,"url":null,"abstract":"<div><p>Electrochemical supercapacitors, one of the storage devices, have attracted much attention owing to their high power density, fast charge-discharge and long cycle life. In this study, we present findings of a hybrid system comprised of gold and polyaniline, fabricated via an <em>in-situ</em>, one pot synthesis route and designed for use in symmetric supercapacitor applications. The gold-polyaniline (Au-PANI) based hybrid material was thoroughly characterized using microscopic, optical, and surface analytical techniques to gain a comprehensive understanding of the system. The electrochemical performance of Au-PANI based electrode was examined using cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and electrochemical impedance spectroscopy (EIS) techniques. The hybrid system exhibited maximum specific capacitance (<span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>S</mi></mrow></msub></math></span>) 387 F/g at the current density of 12 A/g for three electrode system. The symmetric supercapacitor exhibited a maximum specific capacity (<span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>S</mi></mrow></msub></math></span>) 303 mAh/g at the current density of 0.1 A/g and achieved a maximum energy density (ED) and power density (PD) of 243 mWh/kg and 619 W/kg at the current density of 0.1 A/g and 0.9 A/g, respectively. Further, the Au-PANI based symmetric device was applied to generate low-frequency waveforms.</p></div>","PeriodicalId":22245,"journal":{"name":"Synthetic Metals","volume":"307 ","pages":"Article 117693"},"PeriodicalIF":4.0000,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Synthetic Metals","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0379677924001553","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Electrochemical supercapacitors, one of the storage devices, have attracted much attention owing to their high power density, fast charge-discharge and long cycle life. In this study, we present findings of a hybrid system comprised of gold and polyaniline, fabricated via an in-situ, one pot synthesis route and designed for use in symmetric supercapacitor applications. The gold-polyaniline (Au-PANI) based hybrid material was thoroughly characterized using microscopic, optical, and surface analytical techniques to gain a comprehensive understanding of the system. The electrochemical performance of Au-PANI based electrode was examined using cyclic voltammetry (CV), galvanostatic charge-discharge (GCD) and electrochemical impedance spectroscopy (EIS) techniques. The hybrid system exhibited maximum specific capacitance (CS) 387 F/g at the current density of 12 A/g for three electrode system. The symmetric supercapacitor exhibited a maximum specific capacity (QS) 303 mAh/g at the current density of 0.1 A/g and achieved a maximum energy density (ED) and power density (PD) of 243 mWh/kg and 619 W/kg at the current density of 0.1 A/g and 0.9 A/g, respectively. Further, the Au-PANI based symmetric device was applied to generate low-frequency waveforms.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用协同效应:基于金-聚苯胺的对称超级电容器用于低频波形产生
电化学超级电容器是存储设备之一,因其功率密度高、充放电速度快和循环寿命长而备受关注。在本研究中,我们介绍了一种由金和聚苯胺组成的混合系统的研究结果,该系统是通过 "一锅合成法 "制造的,设计用于对称超级电容器应用。我们使用显微镜、光学和表面分析技术对这种基于金-聚苯胺(Au-PANI)的混合材料进行了全面表征,以获得对该系统的全面了解。利用循环伏安法(CV)、电静态充放电法(GCD)和电化学阻抗光谱法(EIS)等技术对金-聚苯胺(Au-PANI)基电极的电化学性能进行了检测。在电流密度为 12 A/g 的三电极系统中,混合系统表现出最大比电容()387 F/g。对称超级电容器在 0.1 A/g 的电流密度下显示出最大比容量()303 mAh/g,在 0.1 A/g 和 0.9 A/g 的电流密度下分别达到 243 mWh/kg 和 619 W/kg 的最大能量密度(ED)和功率密度(PD)。此外,基于 Au-PANI 的对称器件还被用于产生低频波形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Synthetic Metals
Synthetic Metals 工程技术-材料科学:综合
CiteScore
8.30
自引率
4.50%
发文量
189
审稿时长
33 days
期刊介绍: This journal is an international medium for the rapid publication of original research papers, short communications and subject reviews dealing with research on and applications of electronic polymers and electronic molecular materials including novel carbon architectures. These functional materials have the properties of metals, semiconductors or magnets and are distinguishable from elemental and alloy/binary metals, semiconductors and magnets.
期刊最新文献
Innovations in carbon nanotube polymer composites: Electrical, thermal, and mechanical advancements for aerospace and automotive applications Enhanced performance of solution-processed organic light-emitting diodes with TEMPOL derivatives Editorial Board Dimethoxyphenoxy alpha-substituted metal-free, and metal phthalocyanines: Electrochemical redox, in-situ spectroelectrochemical and electrochromic properties Potentiostatic synthesis of polyaniline zinc and iron oxide composites for energy storage applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1