Ultra-fast switching of energy efficient electrochromic nickel oxide thin films for smart window applications

IF 5.1 2区 材料科学 Q1 MATERIALS SCIENCE, CERAMICS Ceramics International Pub Date : 2024-07-07 DOI:10.1016/j.ceramint.2024.07.054
K.S. Usha, Sang Yeol Lee, R. Sivakumar, C. Sanjeeviraja
{"title":"Ultra-fast switching of energy efficient electrochromic nickel oxide thin films for smart window applications","authors":"K.S. Usha, Sang Yeol Lee, R. Sivakumar, C. Sanjeeviraja","doi":"10.1016/j.ceramint.2024.07.054","DOIUrl":null,"url":null,"abstract":"<p>In today's modern world, energy consumption continues to escalate. In such cases, smart windows play a crucial role in reducing energy consumption and enhancing the quality of life. Electrochromic devices (ECDs) -based smart windows rely profoundly on nickel oxide (NiO) thin films, which act as a counter electrode in ECDs. This work aims to fabricate NiO thin films, with the intention of achieving ultrafast ECD. Through the sputtering technique, energy- efficient ECD is obtained with the highest optical modulation of 60% at a rapid switching speed of 0.55s for bleaching and 0.95s for coloration. We have also investigated the structural, morphological, vibrational, and optical properties of NiO thin films. XRD analysis revealed the less crystalline or near amorphous nature of NiO thin film. XPS, PL, and Raman studies confirm the existence of defects in the film. The favourable, less crystalline nature, along with the presence of defects, facilitates ultra- fast ion intercalation and de-intercalation process. We believe that prepared NiO film can be used as a promising anodic colourant in electrochromic smart windows with applications in energy-efficient buildings.</p>","PeriodicalId":267,"journal":{"name":"Ceramics International","volume":null,"pages":null},"PeriodicalIF":5.1000,"publicationDate":"2024-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ceramics International","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.ceramint.2024.07.054","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

In today's modern world, energy consumption continues to escalate. In such cases, smart windows play a crucial role in reducing energy consumption and enhancing the quality of life. Electrochromic devices (ECDs) -based smart windows rely profoundly on nickel oxide (NiO) thin films, which act as a counter electrode in ECDs. This work aims to fabricate NiO thin films, with the intention of achieving ultrafast ECD. Through the sputtering technique, energy- efficient ECD is obtained with the highest optical modulation of 60% at a rapid switching speed of 0.55s for bleaching and 0.95s for coloration. We have also investigated the structural, morphological, vibrational, and optical properties of NiO thin films. XRD analysis revealed the less crystalline or near amorphous nature of NiO thin film. XPS, PL, and Raman studies confirm the existence of defects in the film. The favourable, less crystalline nature, along with the presence of defects, facilitates ultra- fast ion intercalation and de-intercalation process. We believe that prepared NiO film can be used as a promising anodic colourant in electrochromic smart windows with applications in energy-efficient buildings.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于智能窗户应用的高能效电致变色氧化镍薄膜的超快速切换
当今世界,能源消耗不断攀升。在这种情况下,智能窗户在降低能耗和提高生活质量方面发挥着至关重要的作用。基于电致变色器件(ECD)的智能窗户在很大程度上依赖于氧化镍(NiO)薄膜,它在 ECD 中起着反电极的作用。这项工作旨在制造氧化镍薄膜,以实现超快 ECD。通过溅射技术,我们获得了高能效的 ECD,在漂白和着色的快速切换速度分别为 0.55s 和 0.95s,光学调制率最高可达 60%。我们还研究了氧化镍薄膜的结构、形态、振动和光学特性。XRD 分析表明,氧化镍薄膜的结晶度较低或接近无定形。XPS、PL 和拉曼研究证实了薄膜中存在缺陷。较低的结晶性以及缺陷的存在有利于超快的离子插层和去插层过程。我们相信,制备的氧化镍薄膜可作为一种前景广阔的阳极着色剂,用于电致变色智能窗,在节能建筑中得到应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Ceramics International
Ceramics International 工程技术-材料科学:硅酸盐
CiteScore
9.40
自引率
15.40%
发文量
4558
审稿时长
25 days
期刊介绍: Ceramics International covers the science of advanced ceramic materials. The journal encourages contributions that demonstrate how an understanding of the basic chemical and physical phenomena may direct materials design and stimulate ideas for new or improved processing techniques, in order to obtain materials with desired structural features and properties. Ceramics International covers oxide and non-oxide ceramics, functional glasses, glass ceramics, amorphous inorganic non-metallic materials (and their combinations with metal and organic materials), in the form of particulates, dense or porous bodies, thin/thick films and laminated, graded and composite structures. Process related topics such as ceramic-ceramic joints or joining ceramics with dissimilar materials, as well as surface finishing and conditioning are also covered. Besides traditional processing techniques, manufacturing routes of interest include innovative procedures benefiting from externally applied stresses, electromagnetic fields and energetic beams, as well as top-down and self-assembly nanotechnology approaches. In addition, the journal welcomes submissions on bio-inspired and bio-enabled materials designs, experimentally validated multi scale modelling and simulation for materials design, and the use of the most advanced chemical and physical characterization techniques of structure, properties and behaviour. Technologically relevant low-dimensional systems are a particular focus of Ceramics International. These include 0, 1 and 2-D nanomaterials (also covering CNTs, graphene and related materials, and diamond-like carbons), their nanocomposites, as well as nano-hybrids and hierarchical multifunctional nanostructures that might integrate molecular, biological and electronic components.
期刊最新文献
Experimental investigation on magnetorheological shear thickening polishing characteristics for SiC substrate High temperature corrosion behavior and mechanism of steel slag-based glass ceramic in the eutectic carbonates Aqueous synthesis of bare and Ag incorporated ZnO, CuO and ZnO-CuO nanomaterials with enhanced catalytic potential All-oxide thin-film varactors with SrMoO3-bottom electrodes and Mn/Ni-doped BST for sub-6 GHz applications Boosting the performance of dye-sensitized solar cells by employing Li-substituted NiO nanosheets as highly efficient electrocatalysts for reduction of triiodide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1