Thermal shock behavior of novel (Yb0.1Gd0.9)2Zr2O7 thermal barrier coatings with a Cr modified (Ni, Pt)Al bond coat

IF 5.1 2区 材料科学 Q1 MATERIALS SCIENCE, CERAMICS Ceramics International Pub Date : 2024-07-08 DOI:10.1016/j.ceramint.2024.07.083
Tingyue Li, Xin Wang, Zhen Zhen, Rende Mu, Limin He, Zhenhua Xu
{"title":"Thermal shock behavior of novel (Yb0.1Gd0.9)2Zr2O7 thermal barrier coatings with a Cr modified (Ni, Pt)Al bond coat","authors":"Tingyue Li, Xin Wang, Zhen Zhen, Rende Mu, Limin He, Zhenhua Xu","doi":"10.1016/j.ceramint.2024.07.083","DOIUrl":null,"url":null,"abstract":"<p>The durability of thermal barrier coatings (TBCs) is significantly influenced both by the ceramic top coat and the bond coat. In this study, novel YbGdZrO ceramic coats were deposited on the surfaces of three types of Cr-modified (Ni, Pt)Al bond coats via electron beam physical vapor deposition (EB-PVD) technique. These Cr-modified (Ni, Pt)Al bond coats were fabricated by magnetic sputtering Cr onto the (Ni, Pt)Al bond coats with varying sputtering times of 30, 60, and 90 minutes. The results indicates that the thickness of the Cr-modified layer increases with the extension of sputtering time. A short deposition time of 30 min is adequate for achieving an appropriate Cr content in the (Ni, Pt)Al bond coats, which ensures selective oxidation of Al element within the bond coat and further enhances the metallurgical interfacial bonding strength with the ceramic coat by adapting to the concentration gradient diffusion. However, as the sputtering time is extended to 60 and 90 minutes, α-Cr begins to form in the Cr-modified (Ni, Pt)Al bond coats, which negatively affects the oxidation resistance of the bond coat. Consequently, the thermal shock life of the TBCs samples is significantly reduced with increasing sputtering time. The longest thermal shock lifetime is obtained on the bond coat with Cr plating time of 30 minutes owing to a differing thermally grown oxide formation and failure mechanism.</p>","PeriodicalId":267,"journal":{"name":"Ceramics International","volume":null,"pages":null},"PeriodicalIF":5.1000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ceramics International","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.ceramint.2024.07.083","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

The durability of thermal barrier coatings (TBCs) is significantly influenced both by the ceramic top coat and the bond coat. In this study, novel YbGdZrO ceramic coats were deposited on the surfaces of three types of Cr-modified (Ni, Pt)Al bond coats via electron beam physical vapor deposition (EB-PVD) technique. These Cr-modified (Ni, Pt)Al bond coats were fabricated by magnetic sputtering Cr onto the (Ni, Pt)Al bond coats with varying sputtering times of 30, 60, and 90 minutes. The results indicates that the thickness of the Cr-modified layer increases with the extension of sputtering time. A short deposition time of 30 min is adequate for achieving an appropriate Cr content in the (Ni, Pt)Al bond coats, which ensures selective oxidation of Al element within the bond coat and further enhances the metallurgical interfacial bonding strength with the ceramic coat by adapting to the concentration gradient diffusion. However, as the sputtering time is extended to 60 and 90 minutes, α-Cr begins to form in the Cr-modified (Ni, Pt)Al bond coats, which negatively affects the oxidation resistance of the bond coat. Consequently, the thermal shock life of the TBCs samples is significantly reduced with increasing sputtering time. The longest thermal shock lifetime is obtained on the bond coat with Cr plating time of 30 minutes owing to a differing thermally grown oxide formation and failure mechanism.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
带有铬改性(镍、铂)铝键涂层的新型(Yb0.1Gd0.9)2Zr2O7 隔热涂层的热冲击行为
热障涂层(TBC)的耐久性在很大程度上受到陶瓷面层和结合层的影响。在这项研究中,通过电子束物理气相沉积(EB-PVD)技术,在三种类型的铬改性(镍、铂)铝结合层表面沉积了新型 YbGdZrO 陶瓷涂层。这些铬改性(镍、铂)铝键合涂层是通过在(镍、铂)铝键合涂层上磁性溅射铬来制造的,溅射时间分别为 30 分钟、60 分钟和 90 分钟。结果表明,铬改性层的厚度随着溅射时间的延长而增加。30 分钟的短沉积时间足以在(镍、铂)铝结合层中达到适当的铬含量,从而确保结合层中的铝元素被选择性氧化,并通过适应浓度梯度扩散进一步提高与陶瓷涂层的冶金界面结合强度。然而,当溅射时间延长到 60 分钟和 90 分钟时,铬改性(镍、铂)铝结合层中开始形成 α-铬,这对结合层的抗氧化性产生了负面影响。因此,随着溅射时间的增加,TBCs 样品的热震寿命显著缩短。镀铬时间为 30 分钟的结合层的热震寿命最长,这是因为热长氧化物的形成和失效机制不同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Ceramics International
Ceramics International 工程技术-材料科学:硅酸盐
CiteScore
9.40
自引率
15.40%
发文量
4558
审稿时长
25 days
期刊介绍: Ceramics International covers the science of advanced ceramic materials. The journal encourages contributions that demonstrate how an understanding of the basic chemical and physical phenomena may direct materials design and stimulate ideas for new or improved processing techniques, in order to obtain materials with desired structural features and properties. Ceramics International covers oxide and non-oxide ceramics, functional glasses, glass ceramics, amorphous inorganic non-metallic materials (and their combinations with metal and organic materials), in the form of particulates, dense or porous bodies, thin/thick films and laminated, graded and composite structures. Process related topics such as ceramic-ceramic joints or joining ceramics with dissimilar materials, as well as surface finishing and conditioning are also covered. Besides traditional processing techniques, manufacturing routes of interest include innovative procedures benefiting from externally applied stresses, electromagnetic fields and energetic beams, as well as top-down and self-assembly nanotechnology approaches. In addition, the journal welcomes submissions on bio-inspired and bio-enabled materials designs, experimentally validated multi scale modelling and simulation for materials design, and the use of the most advanced chemical and physical characterization techniques of structure, properties and behaviour. Technologically relevant low-dimensional systems are a particular focus of Ceramics International. These include 0, 1 and 2-D nanomaterials (also covering CNTs, graphene and related materials, and diamond-like carbons), their nanocomposites, as well as nano-hybrids and hierarchical multifunctional nanostructures that might integrate molecular, biological and electronic components.
期刊最新文献
Experimental investigation on magnetorheological shear thickening polishing characteristics for SiC substrate High temperature corrosion behavior and mechanism of steel slag-based glass ceramic in the eutectic carbonates Aqueous synthesis of bare and Ag incorporated ZnO, CuO and ZnO-CuO nanomaterials with enhanced catalytic potential All-oxide thin-film varactors with SrMoO3-bottom electrodes and Mn/Ni-doped BST for sub-6 GHz applications Boosting the performance of dye-sensitized solar cells by employing Li-substituted NiO nanosheets as highly efficient electrocatalysts for reduction of triiodide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1