A novel contact thermal resistance model for heat transfer in granular systems: Leveraging the force-heat analogy

IF 5 2区 工程技术 Q1 ENGINEERING, MECHANICAL International Journal of Heat and Mass Transfer Pub Date : 2024-07-08 DOI:10.1016/j.ijheatmasstransfer.2024.125919
Yiyang Luo , Nan Gui , Zhiyong Liu , Xingtuan Yang , Jiyuan Tu
{"title":"A novel contact thermal resistance model for heat transfer in granular systems: Leveraging the force-heat analogy","authors":"Yiyang Luo ,&nbsp;Nan Gui ,&nbsp;Zhiyong Liu ,&nbsp;Xingtuan Yang ,&nbsp;Jiyuan Tu","doi":"10.1016/j.ijheatmasstransfer.2024.125919","DOIUrl":null,"url":null,"abstract":"<div><p>A novel particle-to-particle contact thermal resistance model is proposed in this study, based on the concept of analogy between force and heat transfer. The distribution of heat flux on the contact surface is assumed to resemble the distribution of stress, eliminating the issue of temperature singularity at the contact edge. The model is validated against existing theories and experiments, showing good agreement. The combined use of the model and the thermal discrete element method is applied to analyze temperature and effective thermal conductivity distributions in a pebble bed within a high-temperature test unit. The average effective thermal conductivity obtained from thermal conduction is found to be 2.99 and 2.61 W/(m·K) for power inputs of 20 kW and 82 kW, respectively. An increase in the outer wall temperature from 200 °C to 1000 °C results in an approximate 20 % increase in the effective thermal diffusivity.</p></div>","PeriodicalId":336,"journal":{"name":"International Journal of Heat and Mass Transfer","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Heat and Mass Transfer","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S001793102400749X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

A novel particle-to-particle contact thermal resistance model is proposed in this study, based on the concept of analogy between force and heat transfer. The distribution of heat flux on the contact surface is assumed to resemble the distribution of stress, eliminating the issue of temperature singularity at the contact edge. The model is validated against existing theories and experiments, showing good agreement. The combined use of the model and the thermal discrete element method is applied to analyze temperature and effective thermal conductivity distributions in a pebble bed within a high-temperature test unit. The average effective thermal conductivity obtained from thermal conduction is found to be 2.99 and 2.61 W/(m·K) for power inputs of 20 kW and 82 kW, respectively. An increase in the outer wall temperature from 200 °C to 1000 °C results in an approximate 20 % increase in the effective thermal diffusivity.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于颗粒系统传热的新型接触热阻模型:利用力-热类比法
本研究基于力与热传递之间的类比概念,提出了一种新颖的粒子间接触热阻模型。假定接触表面的热通量分布类似于应力分布,从而消除了接触边缘的温度奇异性问题。该模型与现有理论和实验进行了验证,结果显示两者吻合良好。结合使用该模型和热离散元件法,分析了高温试验装置内卵石床的温度和有效导热系数分布。在输入功率分别为 20 kW 和 82 kW 的情况下,热传导得到的平均有效热导率分别为 2.99 和 2.61 W/(m-K)。外壁温度从 200 °C 升至 1000 °C 会导致有效热扩散率增加约 20%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.30
自引率
13.50%
发文量
1319
审稿时长
41 days
期刊介绍: International Journal of Heat and Mass Transfer is the vehicle for the exchange of basic ideas in heat and mass transfer between research workers and engineers throughout the world. It focuses on both analytical and experimental research, with an emphasis on contributions which increase the basic understanding of transfer processes and their application to engineering problems. Topics include: -New methods of measuring and/or correlating transport-property data -Energy engineering -Environmental applications of heat and/or mass transfer
期刊最新文献
Bridging the gap: Unraveling the role of nano-gas nuclei in the non-equilibrium water-vapor phase transition Investigation of thermal-hydraulic performance of circular, elliptical & mixed circular-elliptical tube bundles for two-phase cross-flow boiling Mechanistic investigation of nucleation kinetics in heterogeneous ice crystallization: the role of cooling rate, surface energy, surface nanostructure, and wetting state Effect of van der Waals interaction on thermal expansion and thermal conductivity of graphite predicted from density-functional theory Modeling the trade-off between performance and pressure drop of bimodal pore size electrodes in vanadium redox flow batteries: Parallel vs. Series arrangement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1