Designing (Hf,Ta)Fe2-based zero thermal expansion composites consisting of multiple Laves phases

IF 9.6 1区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Rare Metals Pub Date : 2024-07-09 DOI:10.1007/s12598-024-02867-7
He Wang, Yi-Han Wang, Yuan-Yuan Gong, Gui-Zhou Xu, Er Liu, Xue-Fei Miao, Yu-Jing Zhang, Yan-Yan Shao, Jun Liu, Najam UI Hassan, Ishfaq Ahmad Shah, Feng Xu
{"title":"Designing (Hf,Ta)Fe2-based zero thermal expansion composites consisting of multiple Laves phases","authors":"He Wang, Yi-Han Wang, Yuan-Yuan Gong, Gui-Zhou Xu, Er Liu, Xue-Fei Miao, Yu-Jing Zhang, Yan-Yan Shao, Jun Liu, Najam UI Hassan, Ishfaq Ahmad Shah, Feng Xu","doi":"10.1007/s12598-024-02867-7","DOIUrl":null,"url":null,"abstract":"<p>MgZn<sub>2</sub>-type (Hf,Ta)Fe<sub>2</sub>, known for its negative thermal expansion during magnetic transition, is a key component in the production of zero thermal expansion composites. This paper presents a basic approach for designing such composites by introducing an additional Laves phase through atomic substitution. Specifically, Co, Ni, Al and V were chosen to substitute Fe in (Hf,Ta)Fe<sub>2</sub>. The addition of Co or Ni results in the creation of an extra MgCu<sub>2</sub> (C15) phase in the MgZn<sub>2</sub> (C14) matrix. The C15 phase exhibits positive thermal expansion, which effectively compensates for the negative thermal expansion of the C14 matrix. By adjusting the amount of Co or Ni, zero thermal expansion can be achieved in a given temperature range. Meanwhile, the replacement of Fe by Al or V yields another C14 phase with a higher doping element content relative to the C14 matrix. These two C14 phases possess different magnetic transition temperatures and negative thermal expansion temperature regions. The combination of the two C14 phases results in zero thermal expansion due to the effective thermal expansion compensation between them. Our results serve to identify potential approaches for designing (Hf,Ta)Fe<sub>2</sub>-based zero thermal expansion composites.</p><h3 data-test=\"abstract-sub-heading\">Graphical abstract</h3>","PeriodicalId":749,"journal":{"name":"Rare Metals","volume":null,"pages":null},"PeriodicalIF":9.6000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rare Metals","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s12598-024-02867-7","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

MgZn2-type (Hf,Ta)Fe2, known for its negative thermal expansion during magnetic transition, is a key component in the production of zero thermal expansion composites. This paper presents a basic approach for designing such composites by introducing an additional Laves phase through atomic substitution. Specifically, Co, Ni, Al and V were chosen to substitute Fe in (Hf,Ta)Fe2. The addition of Co or Ni results in the creation of an extra MgCu2 (C15) phase in the MgZn2 (C14) matrix. The C15 phase exhibits positive thermal expansion, which effectively compensates for the negative thermal expansion of the C14 matrix. By adjusting the amount of Co or Ni, zero thermal expansion can be achieved in a given temperature range. Meanwhile, the replacement of Fe by Al or V yields another C14 phase with a higher doping element content relative to the C14 matrix. These two C14 phases possess different magnetic transition temperatures and negative thermal expansion temperature regions. The combination of the two C14 phases results in zero thermal expansion due to the effective thermal expansion compensation between them. Our results serve to identify potential approaches for designing (Hf,Ta)Fe2-based zero thermal expansion composites.

Graphical abstract

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
设计由多种拉维斯相组成的(Hf,Ta)Fe2 基零热膨胀复合材料
MgZn2 型(Hf,Ta)Fe2 因其在磁转变过程中的负热膨胀而闻名,是生产零热膨胀复合材料的关键成分。本文介绍了设计此类复合材料的基本方法,即通过原子置换引入额外的拉维斯相。具体来说,选择 Co、Ni、Al 和 V 来替代 (Hf,Ta)Fe2 中的 Fe。钴或镍的加入会在 MgZn2(C14)基体中产生额外的 MgCu2(C15)相。C15 相具有正热膨胀,可有效补偿 C14 基体的负热膨胀。通过调整钴或镍的含量,可在给定温度范围内实现零热膨胀。同时,用铝或钒取代铁,可产生另一种掺杂元素含量相对于 C14 基体较高的 C14 相。这两种 C14 相具有不同的磁转变温度和负热膨胀温度区域。由于这两种 C14 相之间存在有效的热膨胀补偿,因此它们的组合会导致零热膨胀。我们的研究结果有助于确定设计基于(Hf,Ta)Fe2 的零热膨胀复合材料的潜在方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Rare Metals
Rare Metals 工程技术-材料科学:综合
CiteScore
12.10
自引率
12.50%
发文量
2919
审稿时长
2.7 months
期刊介绍: Rare Metals is a monthly peer-reviewed journal published by the Nonferrous Metals Society of China. It serves as a platform for engineers and scientists to communicate and disseminate original research articles in the field of rare metals. The journal focuses on a wide range of topics including metallurgy, processing, and determination of rare metals. Additionally, it showcases the application of rare metals in advanced materials such as superconductors, semiconductors, composites, and ceramics.
期刊最新文献
Portevin–Le Chatelier (PLC) effect induced by different deformation mechanisms in Ni–25Mo–8Cr alloy during high-temperature tensile deformation Magnetic properties and microstructures of multi-component Sm–Co-based films prepared by high-throughput experiments Coercivity enhancement of nanocrystalline Ce-based magnets utilizing simplified one-step hot deformation process Fluorinated N,P co-doped biomass carbon with high-rate performance as cathode material for lithium/fluorinated carbon battery WSe2/MoSe2 with a better-matched heterointerface dominating high-performance potassium/sodium storage
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1