Jiayang Li, Qianni Wang, Liyang Feng, Jun Xie, Yu (Marco) Nie
{"title":"A Day-to-Day Dynamical Approach to the Most Likely User Equilibrium Problem","authors":"Jiayang Li, Qianni Wang, Liyang Feng, Jun Xie, Yu (Marco) Nie","doi":"10.1287/trsc.2024.0525","DOIUrl":null,"url":null,"abstract":"The lack of a unique user equilibrium (UE) route flow in traffic assignment has posed a significant challenge to many transportation applications. The maximum-entropy principle, which advocates for the consistent selection of the most likely solution, is often used to address the challenge. Built on a recently proposed day-to-day discrete-time dynamical model called cumulative logit (CumLog), this study provides a new behavioral underpinning for the maximum-entropy user equilibrium (MEUE) route flow. It has been proven that CumLog can reach a UE state without presuming that travelers are perfectly rational. Here, we further establish that CumLog always converges to the MEUE route flow if (i) travelers have no prior information about routes and thus, are forced to give all routes an equal initial choice probability or if (ii) all travelers gather information from the same source such that the general proportionality condition is satisfied. Thus, CumLog may be used as a practical solution algorithm for the MEUE problem. To put this idea into practice, we propose to eliminate the route enumeration requirement of the original CumLog model through an iterative route discovery scheme. We also examine the discrete-time versions of four popular continuous-time dynamical models and compare them with CumLog. The analysis shows that the replicator dynamic is the only one that has the potential to reach the MEUE solution with some regularity. The analytical results are confirmed through numerical experiments.History: This paper has been accepted for the Transportation Science Special Issue on ISTTT25 Conference.Funding: This research was funded by the United States National Science Foundation’s Division of Civil, Mechanical and Manufacturing Innovation [Grant 2225087]. The work of J. Xie was funded by the National Natural Science Foundation of China [Grant 72371205].Supplemental Material: The online appendix is available at https://doi.org/10.1287/trsc.2024.0525 .","PeriodicalId":51202,"journal":{"name":"Transportation Science","volume":"54 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1287/trsc.2024.0525","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The lack of a unique user equilibrium (UE) route flow in traffic assignment has posed a significant challenge to many transportation applications. The maximum-entropy principle, which advocates for the consistent selection of the most likely solution, is often used to address the challenge. Built on a recently proposed day-to-day discrete-time dynamical model called cumulative logit (CumLog), this study provides a new behavioral underpinning for the maximum-entropy user equilibrium (MEUE) route flow. It has been proven that CumLog can reach a UE state without presuming that travelers are perfectly rational. Here, we further establish that CumLog always converges to the MEUE route flow if (i) travelers have no prior information about routes and thus, are forced to give all routes an equal initial choice probability or if (ii) all travelers gather information from the same source such that the general proportionality condition is satisfied. Thus, CumLog may be used as a practical solution algorithm for the MEUE problem. To put this idea into practice, we propose to eliminate the route enumeration requirement of the original CumLog model through an iterative route discovery scheme. We also examine the discrete-time versions of four popular continuous-time dynamical models and compare them with CumLog. The analysis shows that the replicator dynamic is the only one that has the potential to reach the MEUE solution with some regularity. The analytical results are confirmed through numerical experiments.History: This paper has been accepted for the Transportation Science Special Issue on ISTTT25 Conference.Funding: This research was funded by the United States National Science Foundation’s Division of Civil, Mechanical and Manufacturing Innovation [Grant 2225087]. The work of J. Xie was funded by the National Natural Science Foundation of China [Grant 72371205].Supplemental Material: The online appendix is available at https://doi.org/10.1287/trsc.2024.0525 .
期刊介绍:
Transportation Science, published quarterly by INFORMS, is the flagship journal of the Transportation Science and Logistics Society of INFORMS. As the foremost scientific journal in the cross-disciplinary operational research field of transportation analysis, Transportation Science publishes high-quality original contributions and surveys on phenomena associated with all modes of transportation, present and prospective, including mainly all levels of planning, design, economic, operational, and social aspects. Transportation Science focuses primarily on fundamental theories, coupled with observational and experimental studies of transportation and logistics phenomena and processes, mathematical models, advanced methodologies and novel applications in transportation and logistics systems analysis, planning and design. The journal covers a broad range of topics that include vehicular and human traffic flow theories, models and their application to traffic operations and management, strategic, tactical, and operational planning of transportation and logistics systems; performance analysis methods and system design and optimization; theories and analysis methods for network and spatial activity interaction, equilibrium and dynamics; economics of transportation system supply and evaluation; methodologies for analysis of transportation user behavior and the demand for transportation and logistics services.
Transportation Science is international in scope, with editors from nations around the globe. The editorial board reflects the diverse interdisciplinary interests of the transportation science and logistics community, with members that hold primary affiliations in engineering (civil, industrial, and aeronautical), physics, economics, applied mathematics, and business.