{"title":"Modeling Multimodal Curbside Usage in Dynamic Networks","authors":"Jiachao Liu, Sean Qian","doi":"10.1287/trsc.2024.0522","DOIUrl":null,"url":null,"abstract":"The proliferation of emerging mobility technology has led to a significant increase in demand for ride-hailing services, on-demand deliveries, and micromobility services, transforming curb spaces into valuable public infrastructure for which multimodal transportation competes. However, the increasing utilization of curbs by different traffic modes has substantial societal impacts, further altering travelers’ choices and polluting the urban environment. Integrating the spatiotemporal characteristics of various behaviors related to curb utilization into general dynamic networks and exploring mobility patterns with multisource data remain a challenge. To address this issue, this study proposes a comprehensive framework of modeling curbside usage by multimodal transportation in a general dynamic network. The framework encapsulates route choices, curb space competition, and interactive effects among different curb users, and it embeds the dynamics of curb usage into a mesoscopic dynamic network model. Furthermore, a curb-aware dynamic origin-destination demand estimation framework is proposed to reveal the network-level spatiotemporal mobility patterns associated with curb usage through a physics-informed data-driven approach. The framework integrates emerging real-world curb use data in conjunction with other mobility data represented on computational graphs, which can be solved efficiently using the forward-backward algorithm on large-scale networks. The framework is examined on a small network as well as a large-scale real-world network. The estimation results on both networks are satisfactory and compelling, demonstrating the capability of the framework to estimate the spatiotemporal curb usage by multimodal transportation.History: This paper has been accepted for the Transportation Science Special Issue on ISTTT25.Funding: This material is based upon work supported by the Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy [Award DE-EE0009659].Supplemental Material: The online appendix is available at https://doi.org/10.1287/trsc.2024.0522 .","PeriodicalId":51202,"journal":{"name":"Transportation Science","volume":"51 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1287/trsc.2024.0522","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The proliferation of emerging mobility technology has led to a significant increase in demand for ride-hailing services, on-demand deliveries, and micromobility services, transforming curb spaces into valuable public infrastructure for which multimodal transportation competes. However, the increasing utilization of curbs by different traffic modes has substantial societal impacts, further altering travelers’ choices and polluting the urban environment. Integrating the spatiotemporal characteristics of various behaviors related to curb utilization into general dynamic networks and exploring mobility patterns with multisource data remain a challenge. To address this issue, this study proposes a comprehensive framework of modeling curbside usage by multimodal transportation in a general dynamic network. The framework encapsulates route choices, curb space competition, and interactive effects among different curb users, and it embeds the dynamics of curb usage into a mesoscopic dynamic network model. Furthermore, a curb-aware dynamic origin-destination demand estimation framework is proposed to reveal the network-level spatiotemporal mobility patterns associated with curb usage through a physics-informed data-driven approach. The framework integrates emerging real-world curb use data in conjunction with other mobility data represented on computational graphs, which can be solved efficiently using the forward-backward algorithm on large-scale networks. The framework is examined on a small network as well as a large-scale real-world network. The estimation results on both networks are satisfactory and compelling, demonstrating the capability of the framework to estimate the spatiotemporal curb usage by multimodal transportation.History: This paper has been accepted for the Transportation Science Special Issue on ISTTT25.Funding: This material is based upon work supported by the Office of Energy Efficiency and Renewable Energy, U.S. Department of Energy [Award DE-EE0009659].Supplemental Material: The online appendix is available at https://doi.org/10.1287/trsc.2024.0522 .
期刊介绍:
Transportation Science, published quarterly by INFORMS, is the flagship journal of the Transportation Science and Logistics Society of INFORMS. As the foremost scientific journal in the cross-disciplinary operational research field of transportation analysis, Transportation Science publishes high-quality original contributions and surveys on phenomena associated with all modes of transportation, present and prospective, including mainly all levels of planning, design, economic, operational, and social aspects. Transportation Science focuses primarily on fundamental theories, coupled with observational and experimental studies of transportation and logistics phenomena and processes, mathematical models, advanced methodologies and novel applications in transportation and logistics systems analysis, planning and design. The journal covers a broad range of topics that include vehicular and human traffic flow theories, models and their application to traffic operations and management, strategic, tactical, and operational planning of transportation and logistics systems; performance analysis methods and system design and optimization; theories and analysis methods for network and spatial activity interaction, equilibrium and dynamics; economics of transportation system supply and evaluation; methodologies for analysis of transportation user behavior and the demand for transportation and logistics services.
Transportation Science is international in scope, with editors from nations around the globe. The editorial board reflects the diverse interdisciplinary interests of the transportation science and logistics community, with members that hold primary affiliations in engineering (civil, industrial, and aeronautical), physics, economics, applied mathematics, and business.