Preparation and thermal properties of latent functional thermal fluid based on size-controllable phase change nanocapsules

IF 6.3 2区 材料科学 Q2 ENERGY & FUELS Solar Energy Materials and Solar Cells Pub Date : 2024-07-06 DOI:10.1016/j.solmat.2024.113031
Qi Zhang, Chongyang Liu, Xuehong Wu, Xueling Zhang, Jun Song, Yanfang Li, Yiqiu Mao
{"title":"Preparation and thermal properties of latent functional thermal fluid based on size-controllable phase change nanocapsules","authors":"Qi Zhang,&nbsp;Chongyang Liu,&nbsp;Xuehong Wu,&nbsp;Xueling Zhang,&nbsp;Jun Song,&nbsp;Yanfang Li,&nbsp;Yiqiu Mao","doi":"10.1016/j.solmat.2024.113031","DOIUrl":null,"url":null,"abstract":"<div><p>Size-controllable 1-octadecanol@polystyrene phase change nanocapsules (NEPCMs) were prepared using the miniemulsion polymerization and dispersed in deionized water containing multi-walled carbon nanotubes to prepare a latent functional thermal fluid (LFTF). The results demonstrate that the NEPCMs exhibit a typical core-shell structure. The average particle size (55.28–143.8 nm) of the NEPCMs can be regulated by controlling the content of compound emulsifiers. The optimal phase change enthalpy has an excellent heat storage capacity of about 222.7 J/g, the encapsulation efficiency is up to 80.63 %, and the average particle size is about 88.3 nm. The heating/cooling cycles results show that NEPCMs have excellent cycle stability. LFTF containing 10 wt% NEPCMs was considered the optimal choice for its excellent photothermal conversion efficiency (up to 64.91 %), excellent dispersion stability (zeta potential 39.17 mV) and thermal storage capacity (peak specific heat capacity 5.72 J g<sup>−1</sup> K<sup>−1</sup>). Under the influence of solar radiation, the temperature rise curve of LFTF exhibited a rapid initial warming rate followed by a plateau period of approximately 76 min upon reaching the melting point of the NEPCMs, whose photothermal conversion efficiency is roughly 2.18 times that of water. The experimental findings demonstrate the potential application of LFTF based on NEPCMs in the solar thermal industry.</p></div>","PeriodicalId":429,"journal":{"name":"Solar Energy Materials and Solar Cells","volume":null,"pages":null},"PeriodicalIF":6.3000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials and Solar Cells","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S092702482400343X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Size-controllable 1-octadecanol@polystyrene phase change nanocapsules (NEPCMs) were prepared using the miniemulsion polymerization and dispersed in deionized water containing multi-walled carbon nanotubes to prepare a latent functional thermal fluid (LFTF). The results demonstrate that the NEPCMs exhibit a typical core-shell structure. The average particle size (55.28–143.8 nm) of the NEPCMs can be regulated by controlling the content of compound emulsifiers. The optimal phase change enthalpy has an excellent heat storage capacity of about 222.7 J/g, the encapsulation efficiency is up to 80.63 %, and the average particle size is about 88.3 nm. The heating/cooling cycles results show that NEPCMs have excellent cycle stability. LFTF containing 10 wt% NEPCMs was considered the optimal choice for its excellent photothermal conversion efficiency (up to 64.91 %), excellent dispersion stability (zeta potential 39.17 mV) and thermal storage capacity (peak specific heat capacity 5.72 J g−1 K−1). Under the influence of solar radiation, the temperature rise curve of LFTF exhibited a rapid initial warming rate followed by a plateau period of approximately 76 min upon reaching the melting point of the NEPCMs, whose photothermal conversion efficiency is roughly 2.18 times that of water. The experimental findings demonstrate the potential application of LFTF based on NEPCMs in the solar thermal industry.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于尺寸可控相变纳米胶囊的潜功能导热液体的制备与热性能
利用微型乳液聚合法制备了尺寸可控的 1-十八醇@聚苯乙烯相变纳米胶囊(NEPCMs),并将其分散在含有多壁碳纳米管的去离子水中以制备潜功能热流体(LFTF)。结果表明,NEPCMs 具有典型的核壳结构。NEPCM 的平均粒径(55.28-143.8 nm)可通过控制复合乳化剂的含量来调节。最佳相变焓具有约 222.7 J/g 的出色蓄热能力,封装效率高达 80.63 %,平均粒径约为 88.3 nm。加热/冷却循环结果表明,NEPCM 具有出色的循环稳定性。含有 10 wt% NEPCMs 的 LFTF 因其出色的光热转换效率(高达 64.91%)、优异的分散稳定性(zeta 电位 39.17 mV)和蓄热能力(峰值比热容 5.72 J g K)而被认为是最佳选择。在太阳辐射的影响下,LFTF 的升温曲线显示出快速的初始升温速率,随后在达到 NEPCM 熔点后出现约 76 分钟的平稳期,其光热转换效率大约是水的 2.18 倍。实验结果表明,基于 NEPCMs 的 LFTF 有可能应用于太阳能热利用行业。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Solar Energy Materials and Solar Cells
Solar Energy Materials and Solar Cells 工程技术-材料科学:综合
CiteScore
12.60
自引率
11.60%
发文量
513
审稿时长
47 days
期刊介绍: Solar Energy Materials & Solar Cells is intended as a vehicle for the dissemination of research results on materials science and technology related to photovoltaic, photothermal and photoelectrochemical solar energy conversion. Materials science is taken in the broadest possible sense and encompasses physics, chemistry, optics, materials fabrication and analysis for all types of materials.
期刊最新文献
Investigation of a solar-assisted methanol steam reforming system: Operational factor screening and computational fluid dynamics data-driven prediction A high effciency (11.06 %) CZTSSe solar cell achieved by combining Ag doping in absorber and BxCd1-xs/caztsse heterojunction annealing Multifunctional daytime radiative cooler resistant to UV aging Generic strategy to prepare PPy-based nanocomposites for efficient and stable interfacial solar desalination with excellent salt-rejecting performance Soiling, cleaning, and abrasion: The results of the 5-year photovoltaic glass coating field study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1