Physical quantity characteristics of severe aircraft turbulence near convective clouds over Australia

IF 2 3区 地球科学 Q3 GEOSCIENCES, MULTIDISCIPLINARY Frontiers in Earth Science Pub Date : 2024-07-09 DOI:10.3389/feart.2024.1393032
Ying Wen, Chao Wang, Runying Wang, Ruoying Nie
{"title":"Physical quantity characteristics of severe aircraft turbulence near convective clouds over Australia","authors":"Ying Wen, Chao Wang, Runying Wang, Ruoying Nie","doi":"10.3389/feart.2024.1393032","DOIUrl":null,"url":null,"abstract":"Using FY–2G satellite data, Aircraft Meteorological Data Relay (AMDAR) downlink data, and the fifth generation European Centre for Medium–Range Weather Forecasts (ECMWF) atmospheric reanalysis of the global climate (ERA5) dataset, we analyzed the circulation, thermal, and dynamic characteristics of the convective aircraft turbulence over Australia in the Southern Hemisphere. The results show that the near-convective clouds turbulence (NCCT) in the Southern Hemisphere mostly occurred in front of deep warm high–pressure ridges in mid–latitude regions and on the left side of the axis of the subtropical westerly jet stream. The isotherms in this area were relatively dense (i.e., large gradients), and the wind speed was high, with strong horizontal and/or vertical cyclonic wind shear. In addition, the NCCT usually occurred near the zero–divergence or zero–vorticity line and in areas with large vertical wind speed gradients. There were also strong vertical and horizontal wind shears in this area, which could easily trigger severe turbulence. Furthermore, the NCCT in the Southern Hemisphere mostly occurred at the intersection of cold and warm temperature advections (i.e., near the zero–temperature advection line), and the turbulence point was located near the high–altitude frontal zone where there was a strong gradient of cold and warm advections. There was temperature inversion with pseudo–equivalent potential temperatures in the middle and lower troposphere on the warmer side of the turbulence point. The unstable stratification of cold air at the top and warm air at the bottom was conducive to triggering convection from the ground, forming strong convective clouds, and causing severe turbulence.","PeriodicalId":12359,"journal":{"name":"Frontiers in Earth Science","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Earth Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3389/feart.2024.1393032","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Using FY–2G satellite data, Aircraft Meteorological Data Relay (AMDAR) downlink data, and the fifth generation European Centre for Medium–Range Weather Forecasts (ECMWF) atmospheric reanalysis of the global climate (ERA5) dataset, we analyzed the circulation, thermal, and dynamic characteristics of the convective aircraft turbulence over Australia in the Southern Hemisphere. The results show that the near-convective clouds turbulence (NCCT) in the Southern Hemisphere mostly occurred in front of deep warm high–pressure ridges in mid–latitude regions and on the left side of the axis of the subtropical westerly jet stream. The isotherms in this area were relatively dense (i.e., large gradients), and the wind speed was high, with strong horizontal and/or vertical cyclonic wind shear. In addition, the NCCT usually occurred near the zero–divergence or zero–vorticity line and in areas with large vertical wind speed gradients. There were also strong vertical and horizontal wind shears in this area, which could easily trigger severe turbulence. Furthermore, the NCCT in the Southern Hemisphere mostly occurred at the intersection of cold and warm temperature advections (i.e., near the zero–temperature advection line), and the turbulence point was located near the high–altitude frontal zone where there was a strong gradient of cold and warm advections. There was temperature inversion with pseudo–equivalent potential temperatures in the middle and lower troposphere on the warmer side of the turbulence point. The unstable stratification of cold air at the top and warm air at the bottom was conducive to triggering convection from the ground, forming strong convective clouds, and causing severe turbulence.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
澳大利亚上空对流云附近严重飞机湍流的物理量特征
利用FY-2G卫星数据、飞机气象数据中继(AMDAR)下行链路数据和第五代欧洲中期天气预报中心(ECMWF)全球气候大气再分析(ERA5)数据集,分析了南半球澳大利亚上空对流性飞机湍流的环流、热力和动力特征。结果表明,南半球的近对流云湍流(NCCT)大多发生在中纬度地区的深暖高压脊前和副热带西风喷流轴线的左侧。这一区域的等温线相对密集(即梯度大),风速高,水平和/或垂直气旋风切变强。此外,NCCT 通常出现在零辐散线或零涡度线附近,以及垂直风速梯度较大的区域。该区域还有强烈的垂直和水平风切变,很容易引发严重的湍流。此外,南半球的 NCCT 大多发生在冷暖温平流的交汇处(即零温平流线附近),湍流点位于冷暖平流梯度较大的高空锋区附近。在湍流点较暖一侧的对流层中下层存在温度倒挂现象,假等势位温度。顶部冷空气和底部暖空气的不稳定分层有利于从地面引发对流,形成强对流云,并造成严重的湍流。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Frontiers in Earth Science
Frontiers in Earth Science Earth and Planetary Sciences-General Earth and Planetary Sciences
CiteScore
3.50
自引率
10.30%
发文量
2076
审稿时长
12 weeks
期刊介绍: Frontiers in Earth Science is an open-access journal that aims to bring together and publish on a single platform the best research dedicated to our planet. This platform hosts the rapidly growing and continuously expanding domains in Earth Science, involving the lithosphere (including the geosciences spectrum), the hydrosphere (including marine geosciences and hydrology, complementing the existing Frontiers journal on Marine Science) and the atmosphere (including meteorology and climatology). As such, Frontiers in Earth Science focuses on the countless processes operating within and among the major spheres constituting our planet. In turn, the understanding of these processes provides the theoretical background to better use the available resources and to face the major environmental challenges (including earthquakes, tsunamis, eruptions, floods, landslides, climate changes, extreme meteorological events): this is where interdependent processes meet, requiring a holistic view to better live on and with our planet. The journal welcomes outstanding contributions in any domain of Earth Science. The open-access model developed by Frontiers offers a fast, efficient, timely and dynamic alternative to traditional publication formats. The journal has 20 specialty sections at the first tier, each acting as an independent journal with a full editorial board. The traditional peer-review process is adapted to guarantee fairness and efficiency using a thorough paperless process, with real-time author-reviewer-editor interactions, collaborative reviewer mandates to maximize quality, and reviewer disclosure after article acceptance. While maintaining a rigorous peer-review, this system allows for a process whereby accepted articles are published online on average 90 days after submission. General Commentary articles as well as Book Reviews in Frontiers in Earth Science are only accepted upon invitation.
期刊最新文献
Light-absorbing capacity of volcanic dust from Iceland and Chile Simulation and prediction of dynamic process of loess landslide and its impact damage to houses Uranium resources associated with phosphoric acid production and water desalination in Saudi Arabia Three-dimensional numerical simulation of factors affecting surface cracking in double-layer rock mass Organic matter enrichment model of Permian Capitanian-Changhsingian black shale in the intra-platform basin of Nanpanjiang basin
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1