Şahin Akpınar, Fatma Gurbuz, Samet Özcan, Mehmet Odabaşı
{"title":"Biopolymeric Composite Columns for Improving Water Quality in a Freshwater Stream Receiving Wastewater Treatment Plant Effluents","authors":"Şahin Akpınar, Fatma Gurbuz, Samet Özcan, Mehmet Odabaşı","doi":"10.1007/s10924-024-03335-0","DOIUrl":null,"url":null,"abstract":"<div><p>Inefficiently treated wastewater, which contains a high concentration of pollutants, is hazardous when it is mixed with the clean water of rivers and lakes. Nitrate in particular is a major global problem that leads to eutrophication and poses a threat to both aquatic ecosystems and human health. To address this issue, this work assessed the efficiency of polymeric cryogel (PC) and biopolymer (EPS)-blended composites (EPS@PC) in removing nitrates. Tests were also conducted to quantify the decrease in phosphate, chloride ions, and chemical oxygen demand (COD) in real water samples taken from the Ankara stream, which receives effluents from both urban (UWTP) and industrial (IWTP) wastewater treatment plants. Five different columns with varying adsorptive properties were prepared, some of which were combined with iron. The EPS-@PC-C5 column demonstrated the highest adsorption ratio for nitrate removal compared to the other tested columns. The EPS@PC-C5 achieved a high removal efficiency of 126.38 mg nitrate/g and showed COD reduction ranging from 60.2 to 94.1%. The removal ratio of chloride concentration varied between 56.0 and 75.7%, while the removal of phosphates ranged from 87 to 99%. Columns composed of EPS (EPS@PC) with both negatively and positively charged ligands are dependable and suitable options for water remediation.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":659,"journal":{"name":"Journal of Polymers and the Environment","volume":"32 11","pages":"5952 - 5964"},"PeriodicalIF":4.7000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10924-024-03335-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymers and the Environment","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10924-024-03335-0","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Inefficiently treated wastewater, which contains a high concentration of pollutants, is hazardous when it is mixed with the clean water of rivers and lakes. Nitrate in particular is a major global problem that leads to eutrophication and poses a threat to both aquatic ecosystems and human health. To address this issue, this work assessed the efficiency of polymeric cryogel (PC) and biopolymer (EPS)-blended composites (EPS@PC) in removing nitrates. Tests were also conducted to quantify the decrease in phosphate, chloride ions, and chemical oxygen demand (COD) in real water samples taken from the Ankara stream, which receives effluents from both urban (UWTP) and industrial (IWTP) wastewater treatment plants. Five different columns with varying adsorptive properties were prepared, some of which were combined with iron. The EPS-@PC-C5 column demonstrated the highest adsorption ratio for nitrate removal compared to the other tested columns. The EPS@PC-C5 achieved a high removal efficiency of 126.38 mg nitrate/g and showed COD reduction ranging from 60.2 to 94.1%. The removal ratio of chloride concentration varied between 56.0 and 75.7%, while the removal of phosphates ranged from 87 to 99%. Columns composed of EPS (EPS@PC) with both negatively and positively charged ligands are dependable and suitable options for water remediation.
期刊介绍:
The Journal of Polymers and the Environment fills the need for an international forum in this diverse and rapidly expanding field. The journal serves a crucial role for the publication of information from a wide range of disciplines and is a central outlet for the publication of high-quality peer-reviewed original papers, review articles and short communications. The journal is intentionally interdisciplinary in regard to contributions and covers the following subjects - polymers, environmentally degradable polymers, and degradation pathways: biological, photochemical, oxidative and hydrolytic; new environmental materials: derived by chemical and biosynthetic routes; environmental blends and composites; developments in processing and reactive processing of environmental polymers; characterization of environmental materials: mechanical, physical, thermal, rheological, morphological, and others; recyclable polymers and plastics recycling environmental testing: in-laboratory simulations, outdoor exposures, and standardization of methodologies; environmental fate: end products and intermediates of biodegradation; microbiology and enzymology of polymer biodegradation; solid-waste management and public legislation specific to environmental polymers; and other related topics.