Abdelkader Mohammed Efa, Khamirul Amin Matori, Mohd Hafiz Mohd Zaid, Che Azurahanim Che Abdullah, Norhazlin Zainuddin, Mohd Zul Hilmi Mayzan, Shahira Liza Kamis
{"title":"Effect of B2O3 on the Physical and Mechanical Properties of Calcium Fluoroaluminosilicate Glass System","authors":"Abdelkader Mohammed Efa, Khamirul Amin Matori, Mohd Hafiz Mohd Zaid, Che Azurahanim Che Abdullah, Norhazlin Zainuddin, Mohd Zul Hilmi Mayzan, Shahira Liza Kamis","doi":"10.1007/s12633-024-03072-y","DOIUrl":null,"url":null,"abstract":"<div><p>Bioactive glasses containing boron oxide have attracted substantial attention owing to their unique attributes and the promising prospects they offer for biomedical uses. The study explores boro calcium fluoro alumino silicate (BCFAS) glass containing boron oxide, highlighting its potential in biomedical applications. The glass was synthesized through melt-water quenching with varying B<sub>2</sub>O<sub>3</sub> ratios, utilizing CaO from clam shell and SiO<sub>2</sub> from soda lime silica glass waste. The investigation examined the physical and mechanical properties of the resulting samples. Results showed that increasing B<sub>2</sub>O<sub>3</sub> content caused a reduction in crystallinity, as confirmed by XRD analysis. The incorporation of B<sub>2</sub>O<sub>3</sub> into the glass structure was further supported by the emergence of B‒O‒B and Si‒O‒B bonds observed in FTIR spectroscopy, which may potentially influence the glass's dissolution and degradation characteristics. However, higher B<sub>2</sub>O<sub>3</sub> content also reduced density, impacting the mechanical properties. Vickers microhardness and compressive strength decreased due to the introduction of the BO<sub>3</sub> unit, which increased the fragility of the glass. While enhancing glass-like behavior and potentially increasing bioactivity, the addition of B<sub>2</sub>O<sub>3</sub> adversely affected its mechanical attributes.</p></div>","PeriodicalId":776,"journal":{"name":"Silicon","volume":"16 13-14","pages":"5327 - 5336"},"PeriodicalIF":2.8000,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Silicon","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12633-024-03072-y","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Bioactive glasses containing boron oxide have attracted substantial attention owing to their unique attributes and the promising prospects they offer for biomedical uses. The study explores boro calcium fluoro alumino silicate (BCFAS) glass containing boron oxide, highlighting its potential in biomedical applications. The glass was synthesized through melt-water quenching with varying B2O3 ratios, utilizing CaO from clam shell and SiO2 from soda lime silica glass waste. The investigation examined the physical and mechanical properties of the resulting samples. Results showed that increasing B2O3 content caused a reduction in crystallinity, as confirmed by XRD analysis. The incorporation of B2O3 into the glass structure was further supported by the emergence of B‒O‒B and Si‒O‒B bonds observed in FTIR spectroscopy, which may potentially influence the glass's dissolution and degradation characteristics. However, higher B2O3 content also reduced density, impacting the mechanical properties. Vickers microhardness and compressive strength decreased due to the introduction of the BO3 unit, which increased the fragility of the glass. While enhancing glass-like behavior and potentially increasing bioactivity, the addition of B2O3 adversely affected its mechanical attributes.
期刊介绍:
The journal Silicon is intended to serve all those involved in studying the role of silicon as an enabling element in materials science. There are no restrictions on disciplinary boundaries provided the focus is on silicon-based materials or adds significantly to the understanding of such materials. Accordingly, such contributions are welcome in the areas of inorganic and organic chemistry, physics, biology, engineering, nanoscience, environmental science, electronics and optoelectronics, and modeling and theory. Relevant silicon-based materials include, but are not limited to, semiconductors, polymers, composites, ceramics, glasses, coatings, resins, composites, small molecules, and thin films.