Ming Zeng, Chang Meng, Bin Han, Yuanhao Li, Hanshen Yu, Huijia Fu, Shutong Zhong
{"title":"Gait Characteristics and Adaptation Strategies of Ants with Missing Legs","authors":"Ming Zeng, Chang Meng, Bin Han, Yuanhao Li, Hanshen Yu, Huijia Fu, Shutong Zhong","doi":"10.1007/s42235-024-00572-w","DOIUrl":null,"url":null,"abstract":"<div><p>This paper systematically studies the movement behavior changes of Camponotus japonicus under one or two leg injuries. Firstly, a linear motion channel matching the size of the ants’ legs was designed, and the movements of ants with different leg injuries were captured using high-speed cameras, constructing a comprehensive video dataset of ants’ movements with missing legs. Secondly, stable and reliable motion position information for keypoints on the ants’ bodies and legs was obtained by utilizing low-annotation biometric keypoint detection technology. Finally, by analyzing the filtered gait data, information about the changes in the step locational points areas, phase differences, and duty factors of the injured ants’ remaining legs was obtained. Comparative analysis of the ants’ gait characteristics revealed some common adjustment patterns when the ants were in the injured states. Additionally, the study found that the loss of a foreleg had a significant impact on the ants’ movement. When two legs were missing, the loss of both legs on the same side had a greater effect on movement, whereas symmetric opposite-side leg loss conditions had a lesser impact. The research will provide an important reference for the subsequent design of gait adjustment algorithms for biomimetic multi-legged robots under damaged conditions.</p></div>","PeriodicalId":614,"journal":{"name":"Journal of Bionic Engineering","volume":"21 5","pages":"2409 - 2423"},"PeriodicalIF":4.9000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Bionic Engineering","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s42235-024-00572-w","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper systematically studies the movement behavior changes of Camponotus japonicus under one or two leg injuries. Firstly, a linear motion channel matching the size of the ants’ legs was designed, and the movements of ants with different leg injuries were captured using high-speed cameras, constructing a comprehensive video dataset of ants’ movements with missing legs. Secondly, stable and reliable motion position information for keypoints on the ants’ bodies and legs was obtained by utilizing low-annotation biometric keypoint detection technology. Finally, by analyzing the filtered gait data, information about the changes in the step locational points areas, phase differences, and duty factors of the injured ants’ remaining legs was obtained. Comparative analysis of the ants’ gait characteristics revealed some common adjustment patterns when the ants were in the injured states. Additionally, the study found that the loss of a foreleg had a significant impact on the ants’ movement. When two legs were missing, the loss of both legs on the same side had a greater effect on movement, whereas symmetric opposite-side leg loss conditions had a lesser impact. The research will provide an important reference for the subsequent design of gait adjustment algorithms for biomimetic multi-legged robots under damaged conditions.
期刊介绍:
The Journal of Bionic Engineering (JBE) is a peer-reviewed journal that publishes original research papers and reviews that apply the knowledge learned from nature and biological systems to solve concrete engineering problems. The topics that JBE covers include but are not limited to:
Mechanisms, kinematical mechanics and control of animal locomotion, development of mobile robots with walking (running and crawling), swimming or flying abilities inspired by animal locomotion.
Structures, morphologies, composition and physical properties of natural and biomaterials; fabrication of new materials mimicking the properties and functions of natural and biomaterials.
Biomedical materials, artificial organs and tissue engineering for medical applications; rehabilitation equipment and devices.
Development of bioinspired computation methods and artificial intelligence for engineering applications.