Dealloyed TiCuMn efficiently catalyze the NO reduction and Zn-NO batteries

IF 4.3 3区 工程技术 Q2 ENGINEERING, CHEMICAL Frontiers of Chemical Science and Engineering Pub Date : 2024-06-25 DOI:10.1007/s11705-024-2452-y
Lang Zhang, Tong Hou, Weijia Liu, Yeyu Wu, Tianran Wei, Junyang Ding, Qian Liu, Jun Luo, Xijun Liu
{"title":"Dealloyed TiCuMn efficiently catalyze the NO reduction and Zn-NO batteries","authors":"Lang Zhang,&nbsp;Tong Hou,&nbsp;Weijia Liu,&nbsp;Yeyu Wu,&nbsp;Tianran Wei,&nbsp;Junyang Ding,&nbsp;Qian Liu,&nbsp;Jun Luo,&nbsp;Xijun Liu","doi":"10.1007/s11705-024-2452-y","DOIUrl":null,"url":null,"abstract":"<div><p>Electrocatalytic NO reduction reaction offers a sustainable route to achieving environmental protection and NH<sub>3</sub> production targets as well. In this work, a class of dealloyed Ti<sub>60</sub>Cu<sub>33</sub>Mn<sub>7</sub> ribbons with enough nanoparticles for the high-efficient NO reduction reaction to NH<sub>3</sub> is fabricated, reaching an excellent Faradaic efficiency of 93.2% at -0.5 V vs reversible hydrogen electrode and a high NH<sub>3</sub> synthesis rate of 717.4 μmol·h<sup>-1</sup>·mg<sub>cat</sub>.<sup>-1</sup> at -0.6 V vs reversible hydrogen electrode. The formed nanoparticles on the surface of the catalyst could facilitate the exposure of active sites and the transportation of various reactive ions and gases. Meanwhile, the Mn content in the TiCuMn ribbons modulates the chemical and physical properties of its surface, such as modifying the electronic structure of the Cu species, optimizing the adsorption energy of N* atoms, decreasing the strength of the NO adsorption, and eliminating the thermodynamic energy barrier, thus improving the NO reduction reaction catalytic performance. Moreover, a Zn-NO battery was fabricated using the catalyst and Zn plates, generating an NH<sub>3</sub> yield of 129.1 μmol·h<sup>-1</sup>·cm<sup>-2</sup> while offering a peak power density of 1.45 mW·cm<sup>-2</sup>.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"18 9","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Chemical Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11705-024-2452-y","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Electrocatalytic NO reduction reaction offers a sustainable route to achieving environmental protection and NH3 production targets as well. In this work, a class of dealloyed Ti60Cu33Mn7 ribbons with enough nanoparticles for the high-efficient NO reduction reaction to NH3 is fabricated, reaching an excellent Faradaic efficiency of 93.2% at -0.5 V vs reversible hydrogen electrode and a high NH3 synthesis rate of 717.4 μmol·h-1·mgcat.-1 at -0.6 V vs reversible hydrogen electrode. The formed nanoparticles on the surface of the catalyst could facilitate the exposure of active sites and the transportation of various reactive ions and gases. Meanwhile, the Mn content in the TiCuMn ribbons modulates the chemical and physical properties of its surface, such as modifying the electronic structure of the Cu species, optimizing the adsorption energy of N* atoms, decreasing the strength of the NO adsorption, and eliminating the thermodynamic energy barrier, thus improving the NO reduction reaction catalytic performance. Moreover, a Zn-NO battery was fabricated using the catalyst and Zn plates, generating an NH3 yield of 129.1 μmol·h-1·cm-2 while offering a peak power density of 1.45 mW·cm-2.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dealloyed TiCuMn 有效催化氮氧化物还原和 Zn-NO 电池
电催化 NO 还原反应为实现环境保护和 NH3 生产目标提供了一条可持续的途径。本研究制备了一类含有足够纳米颗粒的去合金化 Ti60Cu33Mn7 带,用于高效 NO 还原 NH3 反应,在 -0.5 V 与可逆氢电极的电压下,其 Faradaic 效率达到 93.2%;在 -0.6 V 与可逆氢电极的电压下,其 NH3 合成率达到 717.4 μmol-h-1-mgcat.-1。催化剂表面形成的纳米颗粒可以促进活性位点的暴露以及各种活性离子和气体的运输。同时,TiCuMn 带中的 Mn 含量可调节其表面的化学和物理特性,如改变 Cu 物种的电子结构、优化 N* 原子的吸附能、降低 NO 的吸附强度和消除热力学能垒,从而改善 NO 还原反应的催化性能。此外,利用该催化剂和锌板制造出了 Zn-NO 电池,其 NH3 产率为 129.1 μmol-h-1-cm-2,峰值功率密度为 1.45 mW-cm-2。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.60
自引率
6.70%
发文量
868
审稿时长
1 months
期刊介绍: Frontiers of Chemical Science and Engineering presents the latest developments in chemical science and engineering, emphasizing emerging and multidisciplinary fields and international trends in research and development. The journal promotes communication and exchange between scientists all over the world. The contents include original reviews, research papers and short communications. Coverage includes catalysis and reaction engineering, clean energy, functional material, nanotechnology and nanoscience, biomaterials and biotechnology, particle technology and multiphase processing, separation science and technology, sustainable technologies and green processing.
期刊最新文献
Effective lateral dispersion of momentum, heat and mass in bubbling fluidized beds Reversible heat-set four-phase transitions of gel1-to-sol1-to-gel2-to-sol2 in binary hydrogels Investigating CO2 electro-reduction mechanisms: DFT insight into earth-abundant Mn diimine catalysts for CO2 conversions over hydrogen evolution reaction, feasibility, and selectivity considerations DFT insights into oxygen vacancy formation and chemical looping dry reforming of methane on metal-substituted CeO2 (111) surface Chemical recycling of polyolefin waste: from the perspective of efficient pyrolysis reactors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1