Yanjun Pan, Elizabeth L. Adams, Leanne R. Ketterlin-Geller, Eric C. Larson, Corey Clark
{"title":"Enhancing middle school students’ computational thinking competency through game-based learning","authors":"Yanjun Pan, Elizabeth L. Adams, Leanne R. Ketterlin-Geller, Eric C. Larson, Corey Clark","doi":"10.1007/s11423-024-10400-x","DOIUrl":null,"url":null,"abstract":"<p>Computational thinking is acknowledged as an essential competency for everyone to learn. However, teachers find it challenging to implement the existing learning approaches in K-12 settings because the existing approaches often focus on teaching computing concepts and skills (i.e., programming skills) rather than on helping students develop their computational thinking competency—a competency that can be used across disciplinary boundaries in accordance with curriculum requirements. To address this need, the current study investigated how game-based learning influenced middle school students’ learning processes, particularly on the development of computational thinking competency, self-efficacy toward computational thinking, and engagement during gameplay. Additionally, the study examined how these outcomes were moderated by individual differences. We observed evidence that the gaming experience influenced students’ computational thinking self-efficacy, but not computational thinking competency or game-based engagement. Compared to age (grade) and prior gaming experience, gender tended to play a more important role in moderating students’ computational thinking competency, self-efficacy toward computational thinking competency, and game-based engagement. Implications and possible directions for future research regarding using game-based learning to enhance computational thinking competency are discussed.</p>","PeriodicalId":501584,"journal":{"name":"Educational Technology Research and Development","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Educational Technology Research and Development","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11423-024-10400-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Computational thinking is acknowledged as an essential competency for everyone to learn. However, teachers find it challenging to implement the existing learning approaches in K-12 settings because the existing approaches often focus on teaching computing concepts and skills (i.e., programming skills) rather than on helping students develop their computational thinking competency—a competency that can be used across disciplinary boundaries in accordance with curriculum requirements. To address this need, the current study investigated how game-based learning influenced middle school students’ learning processes, particularly on the development of computational thinking competency, self-efficacy toward computational thinking, and engagement during gameplay. Additionally, the study examined how these outcomes were moderated by individual differences. We observed evidence that the gaming experience influenced students’ computational thinking self-efficacy, but not computational thinking competency or game-based engagement. Compared to age (grade) and prior gaming experience, gender tended to play a more important role in moderating students’ computational thinking competency, self-efficacy toward computational thinking competency, and game-based engagement. Implications and possible directions for future research regarding using game-based learning to enhance computational thinking competency are discussed.