Performance improvement of induction motor drives in low-speed operation using gray wolf optimizer based on IFOC

IF 1.3 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Journal of Power Electronics Pub Date : 2024-07-08 DOI:10.1007/s43236-024-00846-w
Nibras Syarif Ramadhan, Era Purwanto, Bambang Sumantri, Hary Oktavianto, Moch Rafi Damas Abdilla, Abdillah Aziz Muntashir
{"title":"Performance improvement of induction motor drives in low-speed operation using gray wolf optimizer based on IFOC","authors":"Nibras Syarif Ramadhan, Era Purwanto, Bambang Sumantri, Hary Oktavianto, Moch Rafi Damas Abdilla, Abdillah Aziz Muntashir","doi":"10.1007/s43236-024-00846-w","DOIUrl":null,"url":null,"abstract":"<p>Low-speed operation of induction motors (IM) requires special treatment to maintain their performance. The use of the indirect field-oriented control (IFOC) method makes the IM reliable in a variety of conditions, but the performance of IFOC is dependent on the reliability of the dq-axis controller, which is part of IFOC. Therefore, this research offers the implementation of the grey wolf optimizer (GWO) method to optimize the PI controller on the d-axis side. The data from this method is compared to the conventional PI method for evaluation. The results show that the GWO-PI and conventional PI method have the same steady-state value (SSV) and error (SSE). The implementation of the GWO-PI method reduces the integral absolute error (IAE) by up to 0.36% and the current consumption by 3.96–10.62%. As for the rise time and settling time aspects, the implementation of GWO-PI provides improvements of 0.001–0.02 s for rise time and 0.08–0.362 s for settling time. This indicates that the implementation of the GWO-PI method on the d-axis controller of the IFOC method can optimize the performance of IM speed and reduce current consumption in the case study of low-speed operation.</p>","PeriodicalId":50081,"journal":{"name":"Journal of Power Electronics","volume":"369 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Electronics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s43236-024-00846-w","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Low-speed operation of induction motors (IM) requires special treatment to maintain their performance. The use of the indirect field-oriented control (IFOC) method makes the IM reliable in a variety of conditions, but the performance of IFOC is dependent on the reliability of the dq-axis controller, which is part of IFOC. Therefore, this research offers the implementation of the grey wolf optimizer (GWO) method to optimize the PI controller on the d-axis side. The data from this method is compared to the conventional PI method for evaluation. The results show that the GWO-PI and conventional PI method have the same steady-state value (SSV) and error (SSE). The implementation of the GWO-PI method reduces the integral absolute error (IAE) by up to 0.36% and the current consumption by 3.96–10.62%. As for the rise time and settling time aspects, the implementation of GWO-PI provides improvements of 0.001–0.02 s for rise time and 0.08–0.362 s for settling time. This indicates that the implementation of the GWO-PI method on the d-axis controller of the IFOC method can optimize the performance of IM speed and reduce current consumption in the case study of low-speed operation.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用基于 IFOC 的灰狼优化器提高感应电机驱动器在低速运行时的性能
感应电机(IM)的低速运行需要特殊处理,以保持其性能。间接面向场控制(IFOC)方法的使用使感应电机在各种条件下都能可靠运行,但 IFOC 的性能取决于作为 IFOC 一部分的 dq 轴控制器的可靠性。因此,本研究采用灰狼优化器 (GWO) 方法来优化 d 轴侧的 PI 控制器。该方法的数据与传统的 PI 方法进行了比较评估。结果表明,GWO-PI 和传统 PI 方法具有相同的稳态值(SSV)和误差(SSE)。采用 GWO-PI 方法后,积分绝对误差(IAE)降低了 0.36%,电流消耗降低了 3.96-10.62%。在上升时间和稳定时间方面,采用 GWO-PI 方法后,上升时间缩短了 0.001-0.02 秒,稳定时间缩短了 0.08-0.362 秒。这表明,在低速运行案例研究中,在 IFOC 方法的 d 轴控制器上实施 GWO-PI 方法可以优化 IM 速度性能并降低电流消耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Power Electronics
Journal of Power Electronics 工程技术-工程:电子与电气
CiteScore
2.30
自引率
21.40%
发文量
195
审稿时长
3.6 months
期刊介绍: The scope of Journal of Power Electronics includes all issues in the field of Power Electronics. Included are techniques for power converters, adjustable speed drives, renewable energy, power quality and utility applications, analysis, modeling and control, power devices and components, power electronics education, and other application.
期刊最新文献
Design of DC bus voltage high dynamic performance control for single-phase converters Parallel connected triple-active-bridge converters with current and voltage balancing coupled inductor for bipolar DC distribution Modelling of SiC MOSFET power devices incorporating physical effects Self-decoupled coupler based dual-coupled LCC-LCC rotating wireless power transfer system with enhanced output power Fault location and type identification method for current and voltage sensors in traction rectifiers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1