Shoaib Malik, Ahmed Bahgat Radwan, Noora Al-Qahtani, Aboubakr Abdullah, Muhsen El Haddad, Raymundo Case, Homero Castaneda, Noora Al-Thani, Jolly Bhadra
{"title":"Focused review on factors affecting martensitic stainless steels and super martensitic stainless steel passive film in the oil and gas field","authors":"Shoaib Malik, Ahmed Bahgat Radwan, Noora Al-Qahtani, Aboubakr Abdullah, Muhsen El Haddad, Raymundo Case, Homero Castaneda, Noora Al-Thani, Jolly Bhadra","doi":"10.1007/s10008-024-05984-6","DOIUrl":null,"url":null,"abstract":"<div><p>Martensitic and super martensitic stainless steels are widely used in the oil and gas industry for general corrosion mitigation in the presence of sweet corrosion (CO<sub>2</sub>) and sour corrosion (H<sub>2</sub>S), providing a cost-effective alternative to more expensive exotic corrosion-resistant alloys. Martensitic stainless steel is an approved material for construction when selecting tubular CO<sub>2</sub> injection wells. This work aims to review the published literature on the subject of the operation limits of martensitic stainless steel and super martensitic stainless steel in high temperatures and high pressure under corrosive environments. Stress corrosion cracking (SCC) and sulfide stress corrosion cracking (SSCC) mechanisms on martensitic and super martensitic stainless steel surfaces are thoroughly analyzed. In this review paper, we have analyzed the factors that play a crucial role in passive film growth and passivity breakdown. The present work is to review the state of the art of mechanism responsible for SCC and SSCC susceptibility in different modified martensitic stainless steel materials, which are applied to the industry and lab scale. We have reviewed the effect of different concentrations of molybdenum content on SCC and SSCC susceptibility of conventional martensitic stainless steel, modified martensitic stainless steel, and super martensitic stainless steel. The effect of tempering temperature on the SCC and SSCC performance of the martensitic and super martensitic stainless steel was also studied. We also studied the effect of different concentrations of chromium on the improved corrosion-resistant properties and stability of passivation film.</p></div>","PeriodicalId":665,"journal":{"name":"Journal of Solid State Electrochemistry","volume":"28 10","pages":"3533 - 3557"},"PeriodicalIF":2.6000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10008-024-05984-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solid State Electrochemistry","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10008-024-05984-6","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Martensitic and super martensitic stainless steels are widely used in the oil and gas industry for general corrosion mitigation in the presence of sweet corrosion (CO2) and sour corrosion (H2S), providing a cost-effective alternative to more expensive exotic corrosion-resistant alloys. Martensitic stainless steel is an approved material for construction when selecting tubular CO2 injection wells. This work aims to review the published literature on the subject of the operation limits of martensitic stainless steel and super martensitic stainless steel in high temperatures and high pressure under corrosive environments. Stress corrosion cracking (SCC) and sulfide stress corrosion cracking (SSCC) mechanisms on martensitic and super martensitic stainless steel surfaces are thoroughly analyzed. In this review paper, we have analyzed the factors that play a crucial role in passive film growth and passivity breakdown. The present work is to review the state of the art of mechanism responsible for SCC and SSCC susceptibility in different modified martensitic stainless steel materials, which are applied to the industry and lab scale. We have reviewed the effect of different concentrations of molybdenum content on SCC and SSCC susceptibility of conventional martensitic stainless steel, modified martensitic stainless steel, and super martensitic stainless steel. The effect of tempering temperature on the SCC and SSCC performance of the martensitic and super martensitic stainless steel was also studied. We also studied the effect of different concentrations of chromium on the improved corrosion-resistant properties and stability of passivation film.
期刊介绍:
The Journal of Solid State Electrochemistry is devoted to all aspects of solid-state chemistry and solid-state physics in electrochemistry.
The Journal of Solid State Electrochemistry publishes papers on all aspects of electrochemistry of solid compounds, including experimental and theoretical, basic and applied work. It equally publishes papers on the thermodynamics and kinetics of electrochemical reactions if at least one actively participating phase is solid. Also of interest are articles on the transport of ions and electrons in solids whenever these processes are relevant to electrochemical reactions and on the use of solid-state electrochemical reactions in the analysis of solids and their surfaces.
The journal covers solid-state electrochemistry and focusses on the following fields: mechanisms of solid-state electrochemical reactions, semiconductor electrochemistry, electrochemical batteries, accumulators and fuel cells, electrochemical mineral leaching, galvanic metal plating, electrochemical potential memory devices, solid-state electrochemical sensors, ion and electron transport in solid materials and polymers, electrocatalysis, photoelectrochemistry, corrosion of solid materials, solid-state electroanalysis, electrochemical machining of materials, electrochromism and electrochromic devices, new electrochemical solid-state synthesis.
The Journal of Solid State Electrochemistry makes the professional in research and industry aware of this swift progress and its importance for future developments and success in the above-mentioned fields.