Data-driven modeling from biased small training data using periodic orbits

Kengo Nakai, Yoshitaka Saiki
{"title":"Data-driven modeling from biased small training data using periodic orbits","authors":"Kengo Nakai, Yoshitaka Saiki","doi":"arxiv-2407.06229","DOIUrl":null,"url":null,"abstract":"In this study, we investigate the effect of reservoir computing training data\non the reconstruction of chaotic dynamics. Our findings indicate that a\ntraining time series comprising a few periodic orbits of low periods can\nsuccessfully reconstruct the Lorenz attractor. We also demonstrate that biased\ntraining data does not negatively impact reconstruction success. Our method's\nability to reconstruct a physical measure is much better than the so-called\ncycle expansion approach, which relies on weighted averaging. Additionally, we\ndemonstrate that fixed point attractors and chaotic transients can be\naccurately reconstructed by a model trained from a few periodic orbits, even\nwhen using different parameters.","PeriodicalId":501065,"journal":{"name":"arXiv - PHYS - Data Analysis, Statistics and Probability","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Data Analysis, Statistics and Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.06229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, we investigate the effect of reservoir computing training data on the reconstruction of chaotic dynamics. Our findings indicate that a training time series comprising a few periodic orbits of low periods can successfully reconstruct the Lorenz attractor. We also demonstrate that biased training data does not negatively impact reconstruction success. Our method's ability to reconstruct a physical measure is much better than the so-called cycle expansion approach, which relies on weighted averaging. Additionally, we demonstrate that fixed point attractors and chaotic transients can be accurately reconstructed by a model trained from a few periodic orbits, even when using different parameters.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用周期轨道从有偏差的小型训练数据中进行数据驱动建模
在本研究中,我们研究了水库计算训练数据对混沌动力学重建的影响。我们的研究结果表明,由几个低周期的周期轨道组成的训练时间序列可以成功重构洛伦兹吸引子。我们还证明,有偏差的训练数据不会对重建成功率产生负面影响。我们的方法重构物理量的能力远远优于依赖加权平均的所谓周期扩展方法。此外,我们还证明了定点吸引子和混沌瞬态可以通过由几个周期轨道训练出来的模型准确地重建,即使使用不同的参数也是如此。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PASS: An Asynchronous Probabilistic Processor for Next Generation Intelligence Astrometric Binary Classification Via Artificial Neural Networks XENONnT Analysis: Signal Reconstruction, Calibration and Event Selection Converting sWeights to Probabilities with Density Ratios Challenges and perspectives in recurrence analyses of event time series
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1