A unified machine learning approach for reconstructing hadronically decaying tau leptons

Laurits Tani, Nalong-Norman Seeba, Hardi Vanaveski, Joosep Pata, Torben Lange
{"title":"A unified machine learning approach for reconstructing hadronically decaying tau leptons","authors":"Laurits Tani, Nalong-Norman Seeba, Hardi Vanaveski, Joosep Pata, Torben Lange","doi":"arxiv-2407.06788","DOIUrl":null,"url":null,"abstract":"Tau leptons serve as an important tool for studying the production of Higgs\nand electroweak bosons, both within and beyond the Standard Model of particle\nphysics. Accurate reconstruction and identification of hadronically decaying\ntau leptons is a crucial task for current and future high energy physics\nexperiments. Given the advances in jet tagging, we demonstrate how tau lepton\nreconstruction can be decomposed into tau identification, kinematic\nreconstruction, and decay mode classification in a multi-task machine learning\nsetup.Based on an electron-positron collision dataset with full detector\nsimulation and reconstruction, we show that common jet tagging architectures\ncan be effectively used for these subtasks. We achieve comparable momentum\nresolutions of 2-3% with all the tested models, while the precision of\nreconstructing individual decay modes is between 80-95%. This paper also serves\nas an introduction to a new publicly available Fu{\\tau}ure dataset and provides\nrecipes for the development and training of tau reconstruction algorithms,\nwhile allowing to study resilience to domain shifts and the use of foundation\nmodels for such tasks.","PeriodicalId":501065,"journal":{"name":"arXiv - PHYS - Data Analysis, Statistics and Probability","volume":"31 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Data Analysis, Statistics and Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.06788","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Tau leptons serve as an important tool for studying the production of Higgs and electroweak bosons, both within and beyond the Standard Model of particle physics. Accurate reconstruction and identification of hadronically decaying tau leptons is a crucial task for current and future high energy physics experiments. Given the advances in jet tagging, we demonstrate how tau lepton reconstruction can be decomposed into tau identification, kinematic reconstruction, and decay mode classification in a multi-task machine learning setup.Based on an electron-positron collision dataset with full detector simulation and reconstruction, we show that common jet tagging architectures can be effectively used for these subtasks. We achieve comparable momentum resolutions of 2-3% with all the tested models, while the precision of reconstructing individual decay modes is between 80-95%. This paper also serves as an introduction to a new publicly available Fu{\tau}ure dataset and provides recipes for the development and training of tau reconstruction algorithms, while allowing to study resilience to domain shifts and the use of foundation models for such tasks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
重构强子衰变头轻子的统一机器学习方法
头轻子是研究希格斯玻色子和电弱玻色子产生的重要工具,无论是在粒子物理学标准模型之内还是之外。精确重建和识别强子衰变的头轻子是当前和未来高能物理实验的一项关键任务。鉴于射流标签技术的进步,我们展示了如何在多任务机器学习设置中将头轻子重构分解为头识别、运动学重构和衰变模式分类。基于具有完整探测器模拟和重构的电子-正电子碰撞数据集,我们展示了常见的射流标签架构可以有效地用于这些子任务。在所有测试模型中,我们实现了2-3%的可比动量分辨率,而重建单个衰变模式的精度在80-95%之间。本文还介绍了一个新的可公开获取的Fu{tau}ure数据集,并为tau重建算法的开发和训练提供了参考,同时允许研究对域偏移的弹性以及基础模型在此类任务中的使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PASS: An Asynchronous Probabilistic Processor for Next Generation Intelligence Astrometric Binary Classification Via Artificial Neural Networks XENONnT Analysis: Signal Reconstruction, Calibration and Event Selection Converting sWeights to Probabilities with Density Ratios Challenges and perspectives in recurrence analyses of event time series
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1