Exotic and physics-informed support vector machines for high energy physics

A. Ramirez-Morales, A. Gutiérrez-Rodríguez, T. Cisneros-Pérez, H. Garcia-Tecocoatzi, A. Dávila-Rivera
{"title":"Exotic and physics-informed support vector machines for high energy physics","authors":"A. Ramirez-Morales, A. Gutiérrez-Rodríguez, T. Cisneros-Pérez, H. Garcia-Tecocoatzi, A. Dávila-Rivera","doi":"arxiv-2407.03538","DOIUrl":null,"url":null,"abstract":"In this article, we explore machine learning techniques using support vector\nmachines with two novel approaches: exotic and physics-informed support vector\nmachines. Exotic support vector machines employ unconventional techniques such\nas genetic algorithms and boosting. Physics-informed support vector machines\nintegrate the physics dynamics of a given high-energy physics process in a\nstraightforward manner. The goal is to efficiently distinguish signal and\nbackground events in high-energy physics collision data. To test our\nalgorithms, we perform computational experiments with simulated Drell-Yan\nevents in proton-proton collisions. Our results highlight the superiority of\nthe physics-informed support vector machines, emphasizing their potential in\nhigh-energy physics and promoting the inclusion of physics information in\nmachine learning algorithms for future research.","PeriodicalId":501065,"journal":{"name":"arXiv - PHYS - Data Analysis, Statistics and Probability","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Data Analysis, Statistics and Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.03538","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we explore machine learning techniques using support vector machines with two novel approaches: exotic and physics-informed support vector machines. Exotic support vector machines employ unconventional techniques such as genetic algorithms and boosting. Physics-informed support vector machines integrate the physics dynamics of a given high-energy physics process in a straightforward manner. The goal is to efficiently distinguish signal and background events in high-energy physics collision data. To test our algorithms, we perform computational experiments with simulated Drell-Yan events in proton-proton collisions. Our results highlight the superiority of the physics-informed support vector machines, emphasizing their potential in high-energy physics and promoting the inclusion of physics information in machine learning algorithms for future research.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于高能物理的奇异物理信息支持向量机
在本文中,我们通过两种新方法探索了使用支持向量机的机器学习技术:异域支持向量机和物理信息支持向量机。外来支持向量机采用非常规技术,如遗传算法和提升技术。物理信息支持向量机以直观的方式整合了给定高能物理过程的物理动态。我们的目标是有效区分高能物理碰撞数据中的信号和背景事件。为了测试我们的算法,我们对质子-质子碰撞中的模拟德雷尔-扬事件进行了计算实验。我们的结果凸显了物理信息支持向量机的优越性,强调了其在高能物理领域的潜力,并促进了将物理信息纳入机器学习算法的未来研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
PASS: An Asynchronous Probabilistic Processor for Next Generation Intelligence Astrometric Binary Classification Via Artificial Neural Networks XENONnT Analysis: Signal Reconstruction, Calibration and Event Selection Converting sWeights to Probabilities with Density Ratios Challenges and perspectives in recurrence analyses of event time series
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1