Natural field diagnosis and molecular confirmation of fungal and bacterial watermelon pathogens in Bangladesh: A case study from Natore and Sylhet district
{"title":"Natural field diagnosis and molecular confirmation of fungal and bacterial watermelon pathogens in Bangladesh: A case study from Natore and Sylhet district","authors":"Raihan Ferdous","doi":"10.1101/2024.07.03.601980","DOIUrl":null,"url":null,"abstract":"The study investigated watermelon diseases in Sylhet and Natore Districts of Bangladesh, characterized by contrasting climatic conditions. Sylhet experiences lower temperatures and high rainfall, while Natore has higher temperatures and low rainfall. In these survey regions, 40 watermelon fields were selected, and 10 diseases were observed, including 4 fungal, 3 bacterial, 2 water mold, and 1 viral disease. The observed diseases were Anthracnose, Cercospora leaf spot, Fusarium wilt, Gummy stem blight, Downy mildew, Phytophthora fruit rot, Bacterial fruit blotch, Angular leaf spot, Yellow vine, and Watermelon mosaic disease. Molecular analysis was done in the Plant Pathology Lab at Sher-e-Bangla Agricultural University using the specific primers for fungal (ITS1/ITS4) and bacterial (27F/1492R) DNA regions and identified nine pathogen species, excluding the causal organism of the viral disease. The identified pathogens included Colletrotrichum orbiculare, Cercospora citrullina, Fusarium oxysporum, Stagonosporopsis cucurbitacearum, Pseudoperonospora cubensis, Phytophthora capsici, Acidovorax citrulli, Pseudomonas syringae, and Serratia marcescens. The sequencing of the identified pathogens revealed high homology (98.91-99.71%) with known sequences in the GenBank database. Phylogenetic analysis showed six clusters for fungal and water mold pathogen isolates and three for bacterial isolates where the percentages of replicate trees were 100% in all the cases. Among the identified diseases, the highest disease occurrence showed by Fusarium wilt (47.5%) following Gummy stem blight (41.5%) in the Sylhet region while Angular leaf spot (37.5%) followed Yellow vine (33%) in the Natore area. Fusarium wilt also showed high disease intensity showcasing its devastating impact on yield. The study highlights the influence of environmental conditions on disease prevalence and underscores the need for tailored management strategies. These findings provide a foundation for developing targeted disease management practices for sustainable watermelon cultivation in Bangladesh.","PeriodicalId":501471,"journal":{"name":"bioRxiv - Pathology","volume":"64 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Pathology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.07.03.601980","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The study investigated watermelon diseases in Sylhet and Natore Districts of Bangladesh, characterized by contrasting climatic conditions. Sylhet experiences lower temperatures and high rainfall, while Natore has higher temperatures and low rainfall. In these survey regions, 40 watermelon fields were selected, and 10 diseases were observed, including 4 fungal, 3 bacterial, 2 water mold, and 1 viral disease. The observed diseases were Anthracnose, Cercospora leaf spot, Fusarium wilt, Gummy stem blight, Downy mildew, Phytophthora fruit rot, Bacterial fruit blotch, Angular leaf spot, Yellow vine, and Watermelon mosaic disease. Molecular analysis was done in the Plant Pathology Lab at Sher-e-Bangla Agricultural University using the specific primers for fungal (ITS1/ITS4) and bacterial (27F/1492R) DNA regions and identified nine pathogen species, excluding the causal organism of the viral disease. The identified pathogens included Colletrotrichum orbiculare, Cercospora citrullina, Fusarium oxysporum, Stagonosporopsis cucurbitacearum, Pseudoperonospora cubensis, Phytophthora capsici, Acidovorax citrulli, Pseudomonas syringae, and Serratia marcescens. The sequencing of the identified pathogens revealed high homology (98.91-99.71%) with known sequences in the GenBank database. Phylogenetic analysis showed six clusters for fungal and water mold pathogen isolates and three for bacterial isolates where the percentages of replicate trees were 100% in all the cases. Among the identified diseases, the highest disease occurrence showed by Fusarium wilt (47.5%) following Gummy stem blight (41.5%) in the Sylhet region while Angular leaf spot (37.5%) followed Yellow vine (33%) in the Natore area. Fusarium wilt also showed high disease intensity showcasing its devastating impact on yield. The study highlights the influence of environmental conditions on disease prevalence and underscores the need for tailored management strategies. These findings provide a foundation for developing targeted disease management practices for sustainable watermelon cultivation in Bangladesh.