Machine-learning convergent melanocytic morphology despite noisy archival slides

Mikio Tada, Garrett Gaskins, Sina Ghandian, Nicholas Mew, Michael J. Keiser, Elizabeth S. Keiser
{"title":"Machine-learning convergent melanocytic morphology despite noisy archival slides","authors":"Mikio Tada, Garrett Gaskins, Sina Ghandian, Nicholas Mew, Michael J. Keiser, Elizabeth S. Keiser","doi":"10.1101/2024.09.12.612732","DOIUrl":null,"url":null,"abstract":"Melanocytic atypia, ranging from benign to malignant, often leads to diagnostic discordance, complicating its prediction by machine learning models. To overcome this, we paired H&E-stained histology images with contiguous or serial sections immunohistochemically (IHC) stained for melanocytic cells via antibodies for MelanA, MelPro, or SOX10. We developed a deep-learning pipeline to identify melanocytic atypia by digitizing a real-world archival dataset of 122 paired whole slide images from 61 confirmed melanoma in situ (MIS) cases at two institutions. Only 37.7% of the cases contained tissue pairs that matched well enough for deep learning. Nonetheless, the MelanA+MelPro models achieved an average area under the receiver-operating characteristic (AUROC) of 0.948 and an average area under the precision-recall curve (AUPRC) of 0.611, while the SOX10 models had an average of 0.867 AUROC and 0.433 AUPRC. Despite learning from biologically different IHC stains, the convolutional neural network (CNN) models independently exhibited an intuitive convergent rationale by explainable AI saliency calculations. Different antibodies, with nuclear versus cytoplasmic staining, provided complementary yet consistent information, which the CNNs integrated effectively. The resulting multi-antibody virtual stains identified morphologic cytologic and small-scale architectural features directly from H&E-stained histology images, which can assist pathologists in assessing cutaneous MIS.","PeriodicalId":501471,"journal":{"name":"bioRxiv - Pathology","volume":"41 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Pathology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.12.612732","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Melanocytic atypia, ranging from benign to malignant, often leads to diagnostic discordance, complicating its prediction by machine learning models. To overcome this, we paired H&E-stained histology images with contiguous or serial sections immunohistochemically (IHC) stained for melanocytic cells via antibodies for MelanA, MelPro, or SOX10. We developed a deep-learning pipeline to identify melanocytic atypia by digitizing a real-world archival dataset of 122 paired whole slide images from 61 confirmed melanoma in situ (MIS) cases at two institutions. Only 37.7% of the cases contained tissue pairs that matched well enough for deep learning. Nonetheless, the MelanA+MelPro models achieved an average area under the receiver-operating characteristic (AUROC) of 0.948 and an average area under the precision-recall curve (AUPRC) of 0.611, while the SOX10 models had an average of 0.867 AUROC and 0.433 AUPRC. Despite learning from biologically different IHC stains, the convolutional neural network (CNN) models independently exhibited an intuitive convergent rationale by explainable AI saliency calculations. Different antibodies, with nuclear versus cytoplasmic staining, provided complementary yet consistent information, which the CNNs integrated effectively. The resulting multi-antibody virtual stains identified morphologic cytologic and small-scale architectural features directly from H&E-stained histology images, which can assist pathologists in assessing cutaneous MIS.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
尽管档案切片噪音很大,但仍能通过机器学习趋同黑素细胞形态学
黑色素细胞不典型性从良性到恶性不等,常常导致诊断不一致,使机器学习模型的预测变得复杂。为了克服这一问题,我们将H&E染色的组织学图像与通过MelanA、MelPro或SOX10抗体对黑色素细胞进行免疫组化(IHC)染色的连续切片配对。我们开发了一种深度学习管道,通过数字化两个机构61个确诊原位黑色素瘤(MIS)病例的122张配对全切片图像的真实世界档案数据集,来识别黑色素细胞不典型性。只有 37.7% 的病例中的组织配对匹配度足以进行深度学习。尽管如此,MelanA+MelPro 模型的平均接受者操作特征下面积(AUROC)为 0.948,平均精确度-召回曲线下面积(AUPRC)为 0.611,而 SOX10 模型的平均接受者操作特征下面积(AUROC)为 0.867,平均精确度-召回曲线下面积(AUPRC)为 0.433。尽管卷积神经网络(CNN)模型从生物学上不同的 IHC 染色体中学习,但通过可解释的人工智能显著性计算,这些模型独立地表现出了直观的趋同性原理。不同抗体的细胞核染色与细胞质染色提供了互补而又一致的信息,卷积神经网络对这些信息进行了有效整合。由此产生的多抗体虚拟染色可直接从 H&E 染色的组织学图像中识别出形态细胞学和小尺度结构特征,有助于病理学家评估皮肤 MIS。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Identification of SPP1-positive macrophages by single-cell spatial analysis in human lung tissues with mycobacterial infection Endothelial miR-34a deletion guards against aneurysm development despite endothelial dysfunction Machine-learning convergent melanocytic morphology despite noisy archival slides Multifocal cutaneous neoplastic vascular proliferations in a rainbow boa (Epicrates cenchria) collection with boid inclusion body disease Growth Analysis of Trichomonas vaginalis in Different Culture Media: Leveraging Large Language Models (LLMs) to Predict and Optimize In Vitro Growth Conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1