Meng-Ke Qi, Ting He, Yi-Wen Zhou, Jing Kang, Zeng-Xiang Pan, Song Kang, Wang-Jiang Wu, Jun Chen, Ling-Hong Zhou, Yuan Xu
{"title":"Two Monte Carlo-based simulators for imaging-system modeling and projection simulation of flat-panel X-ray source","authors":"Meng-Ke Qi, Ting He, Yi-Wen Zhou, Jing Kang, Zeng-Xiang Pan, Song Kang, Wang-Jiang Wu, Jun Chen, Ling-Hong Zhou, Yuan Xu","doi":"10.1007/s41365-024-01489-z","DOIUrl":null,"url":null,"abstract":"<p>The advantages of a flat-panel X-ray source (FPXS) make it a promising candidate for imaging applications. Accurate imaging-system modeling and projection simulation are critical for analyzing imaging performance and resolving overlapping projection issues in FPXS. The conventional analytical ray-tracing approach is limited by the number of patterns and is not applicable to FPXS-projection calculations. However, the computation time of Monte Carlo (MC) simulation is independent of the size of the patterned arrays in FPXS. This study proposes two high-efficiency MC projection simulators for FPXS: a graphics processing unit (GPU)-based phase-space sampling MC (gPSMC) simulator and GPU-based fluence sampling MC (gFSMC) simulator. The two simulators comprise three components: imaging-system modeling, photon initialization, and physical-interaction simulations in the phantom. Imaging-system modeling was performed by modeling the FPXS, imaging geometry, and detector. The gPSMC simulator samples the initial photons from the phase space, whereas the gFSMC simulator performs photon initialization from the calculated energy spectrum and fluence map. The entire process of photon interaction with the geometry and arrival at the detector was simulated in parallel using multiple GPU kernels, and projections based on the two simulators were calculated. The accuracies of the two simulators were evaluated by comparing them with the conventional analytical ray-tracing approach and acquired projections, and the efficiencies were evaluated by comparing the computation time. The results of simulated and realistic experiments illustrate the accuracy and efficiency of the proposed gPSMC and gFSMC simulators in the projection calculation of various phantoms.</p>","PeriodicalId":19177,"journal":{"name":"Nuclear Science and Techniques","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Science and Techniques","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1007/s41365-024-01489-z","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The advantages of a flat-panel X-ray source (FPXS) make it a promising candidate for imaging applications. Accurate imaging-system modeling and projection simulation are critical for analyzing imaging performance and resolving overlapping projection issues in FPXS. The conventional analytical ray-tracing approach is limited by the number of patterns and is not applicable to FPXS-projection calculations. However, the computation time of Monte Carlo (MC) simulation is independent of the size of the patterned arrays in FPXS. This study proposes two high-efficiency MC projection simulators for FPXS: a graphics processing unit (GPU)-based phase-space sampling MC (gPSMC) simulator and GPU-based fluence sampling MC (gFSMC) simulator. The two simulators comprise three components: imaging-system modeling, photon initialization, and physical-interaction simulations in the phantom. Imaging-system modeling was performed by modeling the FPXS, imaging geometry, and detector. The gPSMC simulator samples the initial photons from the phase space, whereas the gFSMC simulator performs photon initialization from the calculated energy spectrum and fluence map. The entire process of photon interaction with the geometry and arrival at the detector was simulated in parallel using multiple GPU kernels, and projections based on the two simulators were calculated. The accuracies of the two simulators were evaluated by comparing them with the conventional analytical ray-tracing approach and acquired projections, and the efficiencies were evaluated by comparing the computation time. The results of simulated and realistic experiments illustrate the accuracy and efficiency of the proposed gPSMC and gFSMC simulators in the projection calculation of various phantoms.
期刊介绍:
Nuclear Science and Techniques (NST) reports scientific findings, technical advances and important results in the fields of nuclear science and techniques. The aim of this periodical is to stimulate cross-fertilization of knowledge among scientists and engineers working in the fields of nuclear research.
Scope covers the following subjects:
• Synchrotron radiation applications, beamline technology;
• Accelerator, ray technology and applications;
• Nuclear chemistry, radiochemistry, radiopharmaceuticals, nuclear medicine;
• Nuclear electronics and instrumentation;
• Nuclear physics and interdisciplinary research;
• Nuclear energy science and engineering.