Probing the Effects of Chirality on Self-Assembling Peptides: Hydrogel Formation, Degradation, Antigen Release, and Adjuvancy

IF 2.3 4区 医学 Q3 BIOPHYSICS Cellular and molecular bioengineering Pub Date : 2024-07-08 DOI:10.1007/s12195-024-00806-1
Anushka Agrawal, Erin M. Euliano, Brett H. Pogostin, Marina H. Yu, Joseph W. R. Swain, Jeffrey D. Hartgerink, Kevin J. McHugh
{"title":"Probing the Effects of Chirality on Self-Assembling Peptides: Hydrogel Formation, Degradation, Antigen Release, and Adjuvancy","authors":"Anushka Agrawal, Erin M. Euliano, Brett H. Pogostin, Marina H. Yu, Joseph W. R. Swain, Jeffrey D. Hartgerink, Kevin J. McHugh","doi":"10.1007/s12195-024-00806-1","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Introduction</h3><p>Multidomain peptides (MDPs) are amino acid sequences that self-assemble to form supramolecular hydrogels under physiological conditions that have shown promise for a number of biomedical applications. K<sub>2</sub>(SL)<sub>6</sub>K<sub>2</sub> (“K<sub>2</sub>”), a widely studied MDP, has demonstrated the ability to enhance the humoral immune response to co-delivered antigen. Herein, we sought to explore the in vitro and in vivo properties of a peptide with the same sequence but opposite chirality (D-K<sub>2</sub>) since peptides composed of D-amino acids are resistant to protease degradation and potentially more immunostimulatory than their canonical counterparts.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>K<sub>2</sub> and D-K<sub>2</sub> hydrogels were characterized and evaluated in vitro using circular dichroism, rheology, cryo-electron microscopy, and fluorescence recovery after photobleaching studies. In vivo experiments in SKH-1 mice were conducted to evaluate both ovalbumin release from the hydrogels and hydrogel degradation. The injection site of the hydrogels was analyzed using histology and humoral immunity was assessed by ELISA.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>In vitro, the enantiomeric hydrogels exhibited similar rheological properties, and fluorescence recovery after photobleaching experiments demonstrated that the diffusion of ovalbumin (OVA), a model antigen, was similar within both hydrogels. In vivo, K<sub>2</sub> and D-K<sub>2</sub> peptide hydrogels had similar OVA release rates, both releasing 89% of the antigen within 8 days. Both hydrogels elicited a similar antigen-specific humoral immune response. However, the in vivo degradation of the D-K<sub>2</sub> hydrogel progressed significantly slower than K<sub>2</sub>. After 4 weeks in vivo, only 23 ± 7% of the K<sub>2</sub> hydrogel remained at the injection site compared to 94 ± 7% of the D-K<sub>2</sub> hydrogel, likely due to their different protease susceptibilities.</p><h3 data-test=\"abstract-sub-heading\">Conclusion</h3><p>Taken together, these data suggest that peptide chirality can be a useful tool for increasing hydrogel residence time for biomedical applications that would benefit from long persistence times and that, if an antigen releases over a sufficiently short period, release can be largely independent of degradation rate, though slower-diffusing payloads may exhibit degradation rate dependence.</p>","PeriodicalId":9687,"journal":{"name":"Cellular and molecular bioengineering","volume":"43 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular and molecular bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12195-024-00806-1","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction

Multidomain peptides (MDPs) are amino acid sequences that self-assemble to form supramolecular hydrogels under physiological conditions that have shown promise for a number of biomedical applications. K2(SL)6K2 (“K2”), a widely studied MDP, has demonstrated the ability to enhance the humoral immune response to co-delivered antigen. Herein, we sought to explore the in vitro and in vivo properties of a peptide with the same sequence but opposite chirality (D-K2) since peptides composed of D-amino acids are resistant to protease degradation and potentially more immunostimulatory than their canonical counterparts.

Methods

K2 and D-K2 hydrogels were characterized and evaluated in vitro using circular dichroism, rheology, cryo-electron microscopy, and fluorescence recovery after photobleaching studies. In vivo experiments in SKH-1 mice were conducted to evaluate both ovalbumin release from the hydrogels and hydrogel degradation. The injection site of the hydrogels was analyzed using histology and humoral immunity was assessed by ELISA.

Results

In vitro, the enantiomeric hydrogels exhibited similar rheological properties, and fluorescence recovery after photobleaching experiments demonstrated that the diffusion of ovalbumin (OVA), a model antigen, was similar within both hydrogels. In vivo, K2 and D-K2 peptide hydrogels had similar OVA release rates, both releasing 89% of the antigen within 8 days. Both hydrogels elicited a similar antigen-specific humoral immune response. However, the in vivo degradation of the D-K2 hydrogel progressed significantly slower than K2. After 4 weeks in vivo, only 23 ± 7% of the K2 hydrogel remained at the injection site compared to 94 ± 7% of the D-K2 hydrogel, likely due to their different protease susceptibilities.

Conclusion

Taken together, these data suggest that peptide chirality can be a useful tool for increasing hydrogel residence time for biomedical applications that would benefit from long persistence times and that, if an antigen releases over a sufficiently short period, release can be largely independent of degradation rate, though slower-diffusing payloads may exhibit degradation rate dependence.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
探究手性对自组装肽的影响:水凝胶的形成、降解、抗原释放和佐剂作用
导言多肽(MDP)是一种氨基酸序列,可在生理条件下自组装形成超分子水凝胶,具有多种生物医学应用前景。K2(SL)6K2("K2")是一种被广泛研究的 MDP,它已被证明能够增强对联合递送抗原的体液免疫反应。在此,我们试图探索一种具有相同序列但手性相反的多肽(D-K2)的体外和体内特性,因为由 D-氨基酸组成的多肽可抗蛋白酶降解,而且可能比其典型对应物更具免疫刺激作用。方法 使用圆二色性、流变学、冷冻电镜和光漂白后荧光恢复研究对 K2 和 D-K2 水凝胶进行了体外表征和评估。对 SKH-1 小鼠进行了体内实验,以评估水凝胶中卵清蛋白的释放和水凝胶降解情况。结果体外实验中,对映体水凝胶表现出相似的流变特性,光漂白实验后的荧光恢复表明,模型抗原卵清蛋白(OVA)在两种水凝胶中的扩散情况相似。在体内,K2 和 D-K2 肽水凝胶的 OVA 释放率相似,都能在 8 天内释放 89% 的抗原。两种水凝胶引起的抗原特异性体液免疫反应相似。然而,D-K2 水凝胶的体内降解速度明显慢于 K2。综合来看,这些数据表明,多肽手性是一种有用的工具,可以延长水凝胶在生物医学应用中的停留时间,从而受益于较长的持续时间,而且如果抗原在足够短的时间内释放,释放在很大程度上与降解率无关,尽管扩散速度较慢的有效载荷可能会表现出降解率依赖性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.60
自引率
3.60%
发文量
30
审稿时长
>12 weeks
期刊介绍: The field of cellular and molecular bioengineering seeks to understand, so that we may ultimately control, the mechanical, chemical, and electrical processes of the cell. A key challenge in improving human health is to understand how cellular behavior arises from molecular-level interactions. CMBE, an official journal of the Biomedical Engineering Society, publishes original research and review papers in the following seven general areas: Molecular: DNA-protein/RNA-protein interactions, protein folding and function, protein-protein and receptor-ligand interactions, lipids, polysaccharides, molecular motors, and the biophysics of macromolecules that function as therapeutics or engineered matrices, for example. Cellular: Studies of how cells sense physicochemical events surrounding and within cells, and how cells transduce these events into biological responses. Specific cell processes of interest include cell growth, differentiation, migration, signal transduction, protein secretion and transport, gene expression and regulation, and cell-matrix interactions. Mechanobiology: The mechanical properties of cells and biomolecules, cellular/molecular force generation and adhesion, the response of cells to their mechanical microenvironment, and mechanotransduction in response to various physical forces such as fluid shear stress. Nanomedicine: The engineering of nanoparticles for advanced drug delivery and molecular imaging applications, with particular focus on the interaction of such particles with living cells. Also, the application of nanostructured materials to control the behavior of cells and biomolecules.
期刊最新文献
Remote-Controlled Gene Delivery in Coaxial 3D-Bioprinted Constructs using Ultrasound-Responsive Bioinks. The 2024 Young Innovators of Cellular and Molecular Bioengineering. Novel 3-D Macrophage Spheroid Model Reveals Reciprocal Regulation of Immunomechanical Stress and Mechano-Immunological Response. Rational Design of HER2-Targeted Combination Therapies to Reverse Drug Resistance in Fibroblast-Protected HER2+ Breast Cancer Cells. Empowering High-Throughput High-Content Analysis of Microphysiological Models: Open-Source Software for Automated Image Analysis of Microvessel Formation and Cell Invasion.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1